Featured Research

from universities, journals, and other organizations

Mini Helicopter Thinks For Itself — On The Fly — To React To Dangerous Situations

Date:
February 17, 2005
Source:
Georgia Institute Of Technology
Summary:
Unmanned aerial vehicles (UAVs) are one step closer to someday matching — and possibly surpassing — their human-piloted counterparts, thanks to the completion of a project successfully tested by Georgia Tech and sponsored by the Defense Advanced Research Projects Agency (DARPA) and the U.S. Air Force Research Laboratory.

GT Max, the first rotary wing UAV, is able to learn as it flies, maneuver aggressively and automatically plan a route through obstacles thanks to its Open Control Platform system.
Credit: Photo courtesy of Georgia Institute Of Technology

ATLANTA (February 8, 2005) — Unmanned aerial vehicles (UAVs) are one step closer to someday matching — and possibly surpassing — their human-piloted counterparts, thanks to the completion of a project successfully tested by Georgia Tech and sponsored by the Defense Advanced Research Projects Agency (DARPA) and the U.S. Air Force Research Laboratory. The project was supported by DARPA’s Information Exploitation Office with Dr. John Bay serving as the program manager.

Researchers from several partner institutions and organizations have helped to successfully build, test and fly the first rotary wing UAV, a helicopter called GTMax, with capabilities of flight control fault identification and reconfiguration, adaptive control and agile maneuvering — all operating on a single vehicle and under a single software architecture.

Collaborators on the project include Draper Laboratories, Vanderbilt University, Scientific Systems Company Inc., Oregon Graduate Institute, Honeywell Laboratories and Boeing.

The flight represents the completion of a DARPA/Air Force project to develop an innovative new software-enabled control (SEC) system with applications to UAVs.

Based on this UAV success, Georgia Tech has now been awarded funding for two follow-on programs for multiple UAVs in an urban warfare environment and for transitioning the technologies developed under the DARPA/Air Force program to military vehicles.

Advances in rotary wing UAVs are particularly important because of their requirement to take off and land in difficult terrain and restricted-size areas, such as ship decks, and their ability to hover while they identify and inspect specific locations. With traditional aircraft, a pilot with years of training and flight experience is on board to react to problems, threats and weather conditions, and current UAVs must be flown much more conservatively and have limited reaction capabilities.

Georgia Tech’s primary contribution to the overall project was continuing work started by Boeing on the new SEC system, an Open Control Platform (OCP), which gives the UAV the ability to reconfigure its software systems autonomously in flight.

The OCP is an object-oriented, real-time operating software architecture that can handle very large sets of data and computations in real time, similar to a pilot’s brain reacting to enemy fire or changing weather conditions.

The system also gives the UAV more agility to help avoid danger without exceeding critical flight parameters.

During the final test at Fort Benning, Ga., the GTMax used eight different low-level flight control systems and three guidance systems in a single flight, including adapting to primary flight control system hardware failures, environmental factors and changes in aircraft configuration.

The final tests on Georgia Tech’s UAV demonstrated several key advancements:

• The UAV is able to learn as it flies.

• The UAV is able to reconfigure after failures in primary flight control systems, including losing the ability to change the pitch of the main rotor.

• The UAV is able to automatically plan a route through obstacles.

• The UAV is able to maneuver aggressively.

• The UAV is able to fly using what it sees in its onboard camera, rather than using traditional navigation systems such as GPS.

• The UAV can be reconfigured in flight to select among several control and guidance systems.

The final experiment, recently conducted at the Military Operations Urban Terrain site in Fort Benning represents five years of collaboration between Georgia Tech’s School of Electrical and Computer Engineering and the Daniel Guggenheim School of Aerospace Engineering.

Georgia Tech’s principal investigators on the project are Dr. Daniel Schrage and Dr. Eric Johnson, professors in Aerospace Engineering; and Dr. George Vachtsevanos, a professor of Electrical and Computer Engineering. The Georgia Tech team was selected by DARPA to be the systems integrator for the entire rotary wing UAV project, integrating engineering advances from a distinguished group of other corporate and university researchers.


Story Source:

The above story is based on materials provided by Georgia Institute Of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Georgia Institute Of Technology. "Mini Helicopter Thinks For Itself — On The Fly — To React To Dangerous Situations." ScienceDaily. ScienceDaily, 17 February 2005. <www.sciencedaily.com/releases/2005/02/050213131550.htm>.
Georgia Institute Of Technology. (2005, February 17). Mini Helicopter Thinks For Itself — On The Fly — To React To Dangerous Situations. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2005/02/050213131550.htm
Georgia Institute Of Technology. "Mini Helicopter Thinks For Itself — On The Fly — To React To Dangerous Situations." ScienceDaily. www.sciencedaily.com/releases/2005/02/050213131550.htm (accessed April 20, 2014).

Share This



More Matter & Energy News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Newsy (Apr. 19, 2014) Nike fired most of its Digital Sport hardware team, the group behind Nike's FuelBand device. Could Apple or an overcrowded market be behind layoffs? Video provided by Newsy
Powered by NewsLook.com
Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins