Featured Research

from universities, journals, and other organizations

Could Schizophrenia Arise From A Single Defect?

Date:
March 2, 2005
Source:
Cell Press
Summary:
Researchers have long puzzled over the apparently multiple causes of complex developmental disorders such as schizophrenia. Individuals seem to be predisposed to the disease by a tragic, mysterious combination of genetics, prenatal trauma, viral infection, and early experience. And its array of symptoms--including hallucinations, delusions, paranoia, and antisocial behavior--has defied simple explanation.

Researchers have long puzzled over the apparently multiple causes of complex developmental disorders such as schizophrenia. Individuals seem to be predisposed to the disease by a tragic, mysterious combination of genetics, prenatal trauma, viral infection, and early experience. And its array of symptoms--including hallucinations, delusions, paranoia, and antisocial behavior--has defied simple explanation.

Related Articles


In experiments with rats, however, researchers led by led by Gerard J.M. Martens of the Nijmegen Center for Molecular Life Sciences (NCMLS) have demonstrated that such seemingly diverse combinations of symptoms can arise from a subtle imbalance in the activity of a single gene whose protein plays a key role in neural development.

The researchers studied the genetic differences between rats bred to be either resistant or susceptible to the drug apomorphine. A long history of studies has revealed that apomorphine-susceptible rats show many behavioral and biochemical differences from normal rats. What's more, the tendency to develop these differences depends on their exposure to stress in early life.

To search for genetic differences between the two types of rats, the researchers used microarrays, or so-called "gene chips," to analyze the activity of thousands of genes in the rats' brains. To their surprise, they discovered only a single genetic difference between the two groups of rats. The levels of activity of a gene called Aph-1b tended to be lower in the susceptible rats than in the non-susceptible rats. Importantly, this gene produces a protein that is a component of an enzyme called g-secretase, which plays a role in regulating many processes in the developing brain. The researchers found that, as a result of this lower level of Aph-1b protein, g-secretase showed reduced activity in the brains of the susceptible rats.

What's more, when the researchers tested various behaviors of "sublines" of rats with different levels of Aph-1b, they found that their behaviors correlated with those levels--termed a "gene dosage effect."

"Thus, a subtle imbalance in the expression of a single gene product that is involved in a wide variety of developmental signaling pathways may well constitute the molecular basis of a complex phenotype that is generally believed to have a multifactorial background," concluded the scientists.

###

The researchers include Marcel W. Coolen, Karen M.J. Van Loo, Nick N.H.M. Van Bakel, and Gerard J.M. Martens of the Nijmegen Center for Molecular Life Sciences (NCMLS) and Institute for Neuroscience at Radboud University Nijmegen; David J. Pulford of Target Discovery at Organon Laboratories Limited; Lutgarde Serneels and Bart De Strooper of the Flanders Interuniversity Institute for Biotechnology (VIB) and Center for Human Genetics at Katholieke Universiteit Leuven; and Bart A. Ellenbroek and Alexander R. Cools of Nijmegen Institute for Neurosciences (NIN) at Radboud University Nijmegen. This work received support from the Netherlands Organization for Scientific Research (NWO). B.D.S. was supported by a Pioneer award from the Alzheimer's Association, grant IUAP P5/9, and EU contract LSHM-CT-2003-503330 (APOPIS).

Marcel W. Coolen, Karen M.J. Van Loo, Nick N.H.M. Van Bakel, David J. Pulford, Lutgarde Serneels, Bart De Strooper, Bart A. Ellenbroek, Alexander R. Cools, and Gerard J.M. Martens: "Gene dosage effect on -secretase component Aph-1b in a rat model for neurodevelopmental disorders"

Publishing in Neuron, Volume 45, Number 4, February 17, 2005, pages 495-503.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Cite This Page:

Cell Press. "Could Schizophrenia Arise From A Single Defect?." ScienceDaily. ScienceDaily, 2 March 2005. <www.sciencedaily.com/releases/2005/02/050223122011.htm>.
Cell Press. (2005, March 2). Could Schizophrenia Arise From A Single Defect?. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2005/02/050223122011.htm
Cell Press. "Could Schizophrenia Arise From A Single Defect?." ScienceDaily. www.sciencedaily.com/releases/2005/02/050223122011.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins