Featured Research

from universities, journals, and other organizations

Teams Build Robots That Walk Like Humans

Date:
March 4, 2005
Source:
Massachusetts Institute Of Technology
Summary:
Three independent research teams, including one from MIT, have built walking robots that mimic humans in terms of their gait, energy-efficiency, and control. The MIT robot also demonstrates a new learning system that allows the robot to continually adapt to the terrain as it walks.

MIT's 'robotoddler' walks down a carpet as an appreciative audience looks on.
Credit: Photo : Donna Coveney, courtesy of MIT

Three independent research teams, including one from MIT, have built walking robots that mimic humans in terms of their gait, energy-efficiency, and control. The MIT robot also demonstrates a new learning system that allows the robot to continually adapt to the terrain as it walks.

Related Articles


The work, to be described in the Feb. 18 issue of the journal Science, could change the way humanoid robots are designed and controlled and has potential applications for robotic prostheses. It could also aid scientists' understanding of the human motor system.

Developed at MIT, Cornell, and Holland's Delft University of Technology, the three robots are all based on the same principle: they are an extension of several years of research into "passive-dynamic walkers" that walk down a shallow slope without any motors. Passive-dynamic walkers were inspired by walking toys that have been around since the 1800s.

TODDLER

Control programs in the Cornell and Delft robots are extremely simple, because a large portion of the control problem is solved in the mechanical design. The MIT robot uses a learning program that exploits this design, allowing the robot to teach itself to walk in less than 20 minutes, or about 600 steps.

Dubbed "Toddler" because it learns to walk and because it toddles when it does so, the robot "is one of the first walking robots to use a learning program, and it is the first to learn to walk without any prior information built into the controller," said Russ Tedrake, a postdoctoral associate in the Department of Brain and Cognitive Sciences.

Among other things, the learning program allows the robot to navigate efficiently over a variety of walking surfaces, and may eventually allow robots to navigate very rough terrain. That's because the program works so quickly that Toddler is able to continuously adapt to the terrain as it walks.

Tedrake will demonstrate Toddler at a press briefing Feb. 17 at the annual meeting of the American Association for the Advancement of Science in Washington, DC. His coauthors of the Science paper are Professor Andy Ruina of Cornell, Steven Collins of the University of Michigan, and Martijn Wisse of Delft.

Tedrake's MIT advisor on the work is Professor Sebastian Seung of the Department of Brain and Cognitive Sciences. The project involved a number of MIT students that participated through the Undergraduate Research Opportunities Program, including Ming-fai Fong, Derrick Tan, and Andrew Baines. The version of the robot featured in Science was designed and built by Tedrake and Teresa Weirui Zhang, an alumni of the MIT mechanical engineering department.

ENERGY-EFFICIENT

The three robots are quite energy-efficient. Cornell's "seems to be at least 10 times more efficient than anybody else's," said Ruina. Rough calculations suggest that it approaches human efficiency, consuming an amount of energy per unit weight and distance comparable to a human walker. The MIT and Delft robots, though not built deliberately to be energy-efficient, still use much less energy than, say, their famous cousin, Honda's Asimo.

How do they move? The Cornell robot supplies power to the ankles to push off. When the forward foot hits the ground, a simple microchip controller tells the rear foot to push off. During the forward swing of each leg, a small motor stretches a spring, which is finally released to provide the push. The Delft robot uses a pneumatic push at the hip, and the MIT robot uses electric motors that directly move the ankle. All three robots have arms synchronized to swing with the opposite leg for balance.

The robot work was done primarily to study the biomechanics and control of human locomotion, but it could have applications in practical robotics. Collins, for example, is applying some of what he's learned to the design of a powered prosthetic foot for amputees. This work was supported in part by the National Science Foundation and the MIT Center for Bits and Atoms.


Story Source:

The above story is based on materials provided by Massachusetts Institute Of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute Of Technology. "Teams Build Robots That Walk Like Humans." ScienceDaily. ScienceDaily, 4 March 2005. <www.sciencedaily.com/releases/2005/02/050223135307.htm>.
Massachusetts Institute Of Technology. (2005, March 4). Teams Build Robots That Walk Like Humans. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2005/02/050223135307.htm
Massachusetts Institute Of Technology. "Teams Build Robots That Walk Like Humans." ScienceDaily. www.sciencedaily.com/releases/2005/02/050223135307.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins