Featured Research

from universities, journals, and other organizations

The Inverse Doppler Effect: ECE Researchers Add To The Bylaws Of Physics

Date:
May 25, 2005
Source:
University of Wisconsin-Madison
Summary:
What if the speed of light is a constant only most of the time? What if gravity sometimes pushed instead of pulled? Scientists are increasingly asking what would seem like far-out questions regarding the laws and rules of physics after discovering conditions and materials where the rules don't quite apply.

MADISON -- What if the speed of light is a constant only most of the time? What if gravity sometimes pushed instead of pulled? Scientists are increasingly asking what would seem like far-out questions regarding the laws and rules of physics after discovering conditions and materials where the rules don't quite apply. Take the Doppler effect.

Related Articles


The Doppler effect is in use everywhere, everyday. Police use it to catch speeders. Satellites use it to track space debris and air-traffic controllers use it to monitor aircraft. The Doppler effect explains why the pitch changes from high to low when a police siren passes you on the street. As the siren moves toward you, it is catching up to and compressing the sound waves it produces, thus the higher pitch. When it passes, the sound expands to fill the increasing space between you and the noise. The sound waves are longer and the pitch is lower.

The inverse Doppler effect is not something you can hear, but understanding it could one day lead to important advances in optics and communications equipment.

Predicted in the 1940s, the inverse Doppler effect was first observed in 2003 by British researchers Nigel Seddon and Trevor Bearpark using an experimental magnetic, nonlinear transmission line sketched out by Avenir Belyantsev and Alexander Kozyrev in 2000. This nonlinear transmission line is a synthetic structure that allows electromagnetic waves to propagate along it in a new fashion. In the experiment, a pulse of current fed into the line acts as the moving "siren" or shockwave. It generates a radio frequency (RF) signal but as the pulse recedes, the spacing between the peaks and troughs in the waves tighten rather than loosen: the inverse of the Doppler effect. That's just the opposite of what happens with sound waves when a siren passes you.

Reporting in the May 20 issue of the journal Physics Review Letters, University of Wisconsin-Madison Research Associate Alexander Kozyrev and Electrical and Computer Engineering Professor Dan van der Weide prove how an RF signal moving through this special transmission line can reverse itself and fall in sync with the shockwave in order to realize the inverse Doppler effect. They demonstrated that the shift arises from a complex and remarkable spatial structure of waves propagating along the line.

Normally consisting of only one spatial period, the considered system exhibits multiple spatial periods enabled by the periodicity of the nonlinear transmission line structure. Their explanation may point the way toward making materials in which this new effect can operate.

"There are now emerging a whole class of experiments, and theories to back them up, that involve the creation of materials that support electromagnetic wave propagation in ways that are not observed in nature," van der Weide says. "In other words, it's turning nature on its head. Some might ask, 'If you can only do this in artificial material, what good is it?' The answer is that we might be able to create materials that could support this type of effect for light or other electromagnetic waves. The larger point is that physicists are starting to challenge what were thought to be the basic laws of nature."

In 1968, Russian theorist V.G. Veselago predicted that materials could be engineered to interact with their environment in the opposite of how natural materials react. In 2000, researchers at the University of California-San Diego (UCSD) confirmed this, creating what's known as the first "left-handed" material.

In nature, all materials appear to obey the "right-hand rule." If the fingers of the right hand represent the waves' electric field, and if the fingers curl around to the base of the hand, representing the magnetic field, then the outstretched thumb indicates the direction of the flow of power. But the UCSD team created material that caused fields to move to the left even though the electromagnetic energy moved to the right. Light waves produced by such material should also produce an inverted Doppler effect. Van der Weide's group, in collaboration with researchers at MIT and the University of Delaware, is also exploring left-handed media.

"This is kind of the tip of the iceberg in terms of discovering things that we've held to be inviolable. We're finding they can, in fact, be violated under certain conditions," van der Weide says. "Can we build structures that would support that kind of thing? The answer appears to be yes."



Story Source:

The above story is based on materials provided by University of Wisconsin-Madison. Note: Materials may be edited for content and length.


Cite This Page:

University of Wisconsin-Madison. "The Inverse Doppler Effect: ECE Researchers Add To The Bylaws Of Physics." ScienceDaily. ScienceDaily, 25 May 2005. <www.sciencedaily.com/releases/2005/05/050524225845.htm>.
University of Wisconsin-Madison. (2005, May 25). The Inverse Doppler Effect: ECE Researchers Add To The Bylaws Of Physics. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2005/05/050524225845.htm
University of Wisconsin-Madison. "The Inverse Doppler Effect: ECE Researchers Add To The Bylaws Of Physics." ScienceDaily. www.sciencedaily.com/releases/2005/05/050524225845.htm (accessed October 30, 2014).

Share This



More Matter & Energy News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com
Saharan Solar Project to Power Europe

Saharan Solar Project to Power Europe

Reuters - Business Video Online (Oct. 29, 2014) A solar energy project in the Tunisian Sahara aims to generate enough clean energy by 2018 to power two million European homes. Matt Stock reports. Video provided by Reuters
Powered by NewsLook.com
Lowe's Testing Robot Sales Assistants in California Store

Lowe's Testing Robot Sales Assistants in California Store

Buzz60 (Oct. 29, 2014) Lowe’s is testing out what it’s describing as a robotic shopping assistant in one of its Orchard Supply Hardware Stores in California. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins