Featured Research

from universities, journals, and other organizations

Scientists Help Develop First Single Molecule Transistor

Date:
June 8, 2005
Source:
University of Liverpool
Summary:
A scientist at the University of Liverpool has helped to create the world's smallest transistor - by proving that a single molecule can power electric circuits.

A single molecule transistor.
Credit: Image courtesy of the National Research Council, Canada

A scientist at the University of Liverpool has helped to create the world's smallest transistor - by proving that a single molecule can power electric circuits.

Related Articles


Dr Werner Hofer, from the University's Surface Science Research Centre, is one of an international team of scientists who have created a prototype that demonstrates a single charged atom on a silicon surface can regulate the conductivity of a nearby molecule. Computers and other technology based on this concept would require much less energy to power, would produce much less heat, and run much faster.

Currently, most electronic devices are based on silicon. There is, however, a limit to how many transistors can be packed into a given volume of silicon as the currents in these transistors are high and can overheat. By miniaturizing a transistor, the time during which an electron can pass through it is reduced and therefore the device can be operated with much higher frequencies and take up much less space.

Dr Hofer, a theorist, who worked in collaboration with colleagues from the National Institute for Nanotechnology of the National Research Council in Canada and the University of Alberta, provided the theoretical background in an experiment to examine the potential for electrical transistors on a much smaller, molecular scale. Their findings have been published in the journal, Nature.

Molecules are extremely small, on the scale of a nanometre (one billionth of a metre). The team tested the transistor potential of a molecule by using the electrostatic field emanating from a single atom to regulate the conductivity of a molecule, allowing an electric current to flow through the molecule. These effects were easily observed at room temperature, in contrast to previous molecular experiments that had to be conducted at temperatures close to absolute zero, and with much smaller current amplification. Dr Hofer explains: "Our experiments demonstrate that we can control the current through a single molecule by charging a single atom on a silicon surface, while all surrounding atoms remain neutral.

"Our research brings us a step nearer to using molecular electronics which would not only prove more efficient and cheaper than current devices, but would also have the potential to power green technology because of the biodegradable nature of the device."

He added: "Our prototype is a scientific breakthrough in molecular electronics. We have successfully shown the potential for devices of unheard-of smallness and unheard-of efficiency. This is the first time anyone has shown that a molecule is in fact a transistor."



Story Source:

The above story is based on materials provided by University of Liverpool. Note: Materials may be edited for content and length.


Cite This Page:

University of Liverpool. "Scientists Help Develop First Single Molecule Transistor." ScienceDaily. ScienceDaily, 8 June 2005. <www.sciencedaily.com/releases/2005/06/050608055511.htm>.
University of Liverpool. (2005, June 8). Scientists Help Develop First Single Molecule Transistor. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2005/06/050608055511.htm
University of Liverpool. "Scientists Help Develop First Single Molecule Transistor." ScienceDaily. www.sciencedaily.com/releases/2005/06/050608055511.htm (accessed October 30, 2014).

Share This



More Matter & Energy News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com
Saharan Solar Project to Power Europe

Saharan Solar Project to Power Europe

Reuters - Business Video Online (Oct. 29, 2014) A solar energy project in the Tunisian Sahara aims to generate enough clean energy by 2018 to power two million European homes. Matt Stock reports. Video provided by Reuters
Powered by NewsLook.com
Lowe's Testing Robot Sales Assistants in California Store

Lowe's Testing Robot Sales Assistants in California Store

Buzz60 (Oct. 29, 2014) Lowe’s is testing out what it’s describing as a robotic shopping assistant in one of its Orchard Supply Hardware Stores in California. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins