Featured Research

from universities, journals, and other organizations

Impaired Clearance Of Amyloid-beta Causes Vascular Damage In Alzheimer's Disease

Date:
July 21, 2005
Source:
American Journal of Pathology
Summary:
New research suggests that accumulation of amyloid-β peptides in cerebral blood vessels, as opposed to the brain itself, may be a more important pathological mediator of Alzheimer's disease. Two independent yet related articles describe such findings in the August issue of The American Journal of Pathology. Both articles are highlighted on the Journal's cover.

New research suggests that accumulation of amyloid-β peptides in cerebral blood vessels, as opposed to the brain itself, may be a more important pathological mediator of Alzheimer's disease. Two independent yet related articles describe such findings in the August issue of The American Journal of Pathology. Both articles are highlighted on the Journal's cover.

Related Articles


Alzheimer's disease, the most common form of progressive dementia, affects an estimated 4.5 million Americans according to the Alzheimer's Association. Amyloid-β (Aβ) deposition is a hallmark of Alzheimer's disease and other cerebral amyloid angiopathies. However, exactly how Aβ accumulates and causes damage is not fully understood.

In the first article, "Cerebral microvascular Aβ deposition induces vascular degeneration and neuroinflammation in transgenic mice expressing human vasculotropic mutant AβPP," Miao et al. describe early-onset Aβ deposition in Tg-SwDI mice. These mice express Aβ protein with mutations that are found in human early-onset cerebral amyloid angiopathy, causing specific accumulation of Aβ in cerebral blood vessels.

The Aβ peptides accumulated because they could not adequately cross the blood-brain barrier to be cleared from the brain. Over time, Aβ accumulation increased in the cerebral microvessels of the thalamus and subiculum of the brain. This resulted in degeneration of blood vessels as evidenced by reduced vessel density and increased apoptosis. Neuroinflammation also occurred as large numbers of microglia, along with inflammatory cytokines, were found at sites of Aβ accumulation.

The authors conclude that early-onset Aβ accumulation occurs predominantly in the cerebral microvasculature and appears largely responsible for the neuroinflammation in these mice. They also demonstrate the utility of Tg-SwDI mice in studying cerebral amyloid angiopathies, such as Alzheimer's disease.

The second article, by Kumar-Singh et al., "Dense-core plaques in Tg2576 and PSAPP mouse models of Alzheimer's disease are centered on vessel walls," utilizes two different transgenic mice: Tg2576 and PSAPP. Both models produce dense-core plaques, highly concentrated deposits of Aβ, and were used to investigate the possible association of blood vessels with Aβ deposits.

In these mice, dense-core plaques associated with cerebral vessels with high specificity. There was also evidence of vessel damage and blood-brain barrier damage, resulting in release of Aβ through the vessel walls and accumulation of plaques next to the vessels. These data confirm previous observations in humans that senile plaques associate with blood vessels, especially in the vasculotropic Flemish type of Alzheimer's disease.

The authors propose a model of dense-core plaque formation that is dependent on cerebral vessels. As Aβ is cleared from the brain, it exerts a cytotoxic effect on the endothelial cells of the vascular wall (a process that may be exacerbated if clearance is impaired). This leads to loss of vessel integrity and accumulation of Aβ in the area surrounding the compromised vessel wall. Eventually, the damage is so great that the blood vessel deteriorates beyond functional use and new vessels form to pick up the slack. The result is a multicentric dense-core plaque that associates with multiple vessels.

These studies describe several animal models for further examining the pathogenesis and treatment of Alzheimer's disease and related cerebral amyloid angiopathies. And both studies confirm that Aβ generated by neurons accumulates in blood vessels following attempted clearance of excess Aβ peptides. Thus, study of novel therapies that reduce the blood vessel-associated deposition of Aβ may prove beneficial to patients with Alzheimer's disease.

###

*Miao J, Xu F, Davis J, Otte-Hφller I, Verbeek MM, Van Nostrand WE: Cerebral microvascular Aβ deposition induces vascular degeneration and neuroinflammation in transgenic mice expressing human vasculotropic mutant AβPP. Am J Pathol 2005, 167: 505-515

†Kumar-Singh S, Pirici D, McGowan E, Serneels S, Ceuterick C, Hardy J, Duff K, Dickson D, Van Broeckhoven C: Dense-core plaques in Tg2576 and PSAPP mouse models of Alzheimer's disease are centered on vessel walls. Am J Pathol 2005, 167: 527-543

*Work was performed at Stony Brook University, New York. †Work was performed at the Flanders Interuniversity Institute for Biotechnology, University of Antwerp, Belgium.



Story Source:

The above story is based on materials provided by American Journal of Pathology. Note: Materials may be edited for content and length.


Cite This Page:

American Journal of Pathology. "Impaired Clearance Of Amyloid-beta Causes Vascular Damage In Alzheimer's Disease." ScienceDaily. ScienceDaily, 21 July 2005. <www.sciencedaily.com/releases/2005/07/050721060135.htm>.
American Journal of Pathology. (2005, July 21). Impaired Clearance Of Amyloid-beta Causes Vascular Damage In Alzheimer's Disease. ScienceDaily. Retrieved January 26, 2015 from www.sciencedaily.com/releases/2005/07/050721060135.htm
American Journal of Pathology. "Impaired Clearance Of Amyloid-beta Causes Vascular Damage In Alzheimer's Disease." ScienceDaily. www.sciencedaily.com/releases/2005/07/050721060135.htm (accessed January 26, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Monday, January 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Technology Is Ruining Snow Days For Students

How Technology Is Ruining Snow Days For Students

Newsy (Jan. 25, 2015) — More schools are using online classes to keep from losing time to snow days, but it only works if students have Internet access at home. Video provided by Newsy
Powered by NewsLook.com
Weird Things Couples Do When They Lose Their Phone

Weird Things Couples Do When They Lose Their Phone

BuzzFeed (Jan. 24, 2015) — Did you back it up? Do you even know how to do that? Video provided by BuzzFeed
Powered by NewsLook.com
Smart Wristband to Shock Away Bad Habits

Smart Wristband to Shock Away Bad Habits

Reuters - Innovations Video Online (Jan. 23, 2015) — A Boston start-up is developing a wristband they say will help users break bad habits by jolting them with an electric shock. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Amazing Technology Allows Blind Mother to See Her Newborn Son

Amazing Technology Allows Blind Mother to See Her Newborn Son

RightThisMinute (Jan. 23, 2015) — Not only is Kathy seeing her newborn son for the first time, but this is actually the first time she has ever seen a baby. Kathy and her sister, Yvonne, have been legally blind since childhood, but thanks to an amazing new technology, eSight glasses, which gives those who are legally blind the ability to see, she got the chance to see the birth of her son. It&apos;s an incredible moment and an even better story. Video provided by RightThisMinute
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins