Featured Research

from universities, journals, and other organizations

Researchers Reveal Basis For Debilitating Hereditary Disease

Date:
October 9, 2005
Source:
University of Texas Health Science Center at Houston
Summary:
A research team led by scientists at The University of Texas Medical School at Houston has determined the structure of an enzyme that can cause inherited coproporphyria, which afflicts sufferers with severe abdominal pain, psychiatric symptoms, skin fragility, and light sensitivity. The structure of CPO is reported this week in Proceedings of the National Academy of Sciences.

The CPO enzyme consists of two identical molecules. Here, the surface structure is depicted in the molecule on the right, and its topology is represented in the molecule on the left.
Credit: Courtesy of C. S. Raman

"Unless prompt and appropriate treatment is given, hereditary coproporphyria can very quickly turn into a life-threatening medical emergency," said C. S. Raman, Ph.D., assistant professor in the Department of Biochemistry and Molecular Biology and senior author of a paper out this week in the Proceedings of the National Academy of Sciences.

Using x-ray crystallography, researchers have generated a three-dimensional image of the enzyme coproporphyrinogen oxidase (CPO) at the atomic level, (resolution of 1.58 angstroms). The enzyme participates in the sixth step of an eight-step pathway that generates heme – an essential molecule that gives blood its distinctive red color and also helps hemoglobin in red blood cells transport oxygen to tissues.

The PNAS paper demonstrates for the first time the enzyme's atomic structure and how mutations in this enzyme specifically disrupt the heme pathway, causing hereditary coproporphyria. The authors review a series of CPO mutations and their effects on the structure and function of the enzyme.

"There will be no life without heme, so it is important to understand how this molecule is produced and utilized," Raman said. Hereditary coproporphyria is rare, affecting two in every million people, "but rare diseases give you major insights into extremely complex biological problems."

Porphyrias are disorders of enzymes in the heme synthesis pathway that reduce heme production and, more importantly, cause accumulation of porphyrins or their precursors, Raman explained. In the case of hereditary coproporphyria, inherited mutations in CPO result in accumulation of coproporphyrin in the liver, leading to disease. In July, British researchers connected the madness of King George III to one of the porphyrias.

"The atomic image of the enzyme teaches us the inner workings of this molecular machine. Particularly, it helps us understand how mutations cause the enzyme to fail, disrupt the heme biosynthesis pathway and culminate in coproporphyrin accumulation," Raman said.

Excess porphyrins are excreted in the feces and urine. As a result urine from patients suffering from coproporphyria turns red or purple when exposed to light.

The CPO structure is the third unique structure solved by Raman's research team, which focuses on heme and nitric oxide synthesis and signaling pathways.

First author of the paper is Dong-Sun Lee, Ph.D., assistant professor of Biochemistry and Molecular Biology at the UT Medical School. He is the recipient of the Beginning Grant-in-Aid (2005) from the American Heart Association. Co-authors are Borries Demeler, Ph.D., assistant professor of biochemistry at The University of Texas Health Science Center at San Antonio, and Eva Flachsová, Michaela Bodnarová and professor Pavel Martásek, all of the Department of Pediatrics, Center of Applied Genomics, First School of Medicine, Charles University in Prague, Czech Republic.

PNAS papers are either communicated or edited by a member of the National Academies of Science. This paper was communicated by Nobel Laureate Ferid Murad, M.D., Ph.D., director of the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases and holder of the John S. Dunn, Sr. Distinguished Chair in Physiology and Medicine at the UT Medical School at Houston.


Story Source:

The above story is based on materials provided by University of Texas Health Science Center at Houston. Note: Materials may be edited for content and length.


Cite This Page:

University of Texas Health Science Center at Houston. "Researchers Reveal Basis For Debilitating Hereditary Disease." ScienceDaily. ScienceDaily, 9 October 2005. <www.sciencedaily.com/releases/2005/10/051008203235.htm>.
University of Texas Health Science Center at Houston. (2005, October 9). Researchers Reveal Basis For Debilitating Hereditary Disease. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2005/10/051008203235.htm
University of Texas Health Science Center at Houston. "Researchers Reveal Basis For Debilitating Hereditary Disease." ScienceDaily. www.sciencedaily.com/releases/2005/10/051008203235.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) — German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) — The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com
Industry's Optimism Shines At New York Auto Show

Industry's Optimism Shines At New York Auto Show

Newsy (Apr. 16, 2014) — After seeing auto sales grow last month, there's plenty for the industry to celebrate as it rolls out its newest designs. Video provided by Newsy
Powered by NewsLook.com
Ford Mustang Fetes Its 50th Atop Empire State Building

Ford Mustang Fetes Its 50th Atop Empire State Building

AFP (Apr. 16, 2014) — Ford celebrated the 50th birthday of its beloved Mustang by displaying a new model of the convertible on top of the Empire State Building in New York. Duration: 00:28 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins