Featured Research

from universities, journals, and other organizations

Quantum Memory: Physicists Demonstrate Storage And Retrieval Of Single Photons Between Remote Memories

Date:
December 13, 2005
Source:
Georgia Institute of Technology
Summary:
A series of publications in the journal Nature highlights the race among competing research groups toward the long-anticipated goal of quantum networking. In one of three papers published the journal's December 8 issue, a group of physicists from the Georgia Institute of Technology describes the storage and retrieval of single photons transmitted between remote quantum memories. The work represents a significant step toward quantum communication and computation networks.

Schematic shows the experimental set-up in which two quantum memories were connected by optical fiber. (Georgia Tech Photo: Gary Meek)

A series of publications in the journal Nature highlights the race among competing research groups toward the long-anticipated goal of quantum networking.

In one of three papers published the journal's December 8 issue, a group of physicists from the Georgia Institute of Technology led by Professors Alex Kuzmich and Brian Kennedy describes the storage and retrieval of single photons transmitted between remote quantum memories composed of rubidium atoms. The work represents a significant step toward quantum communication and computation networks that would store and process information using both photons and atoms.

But the researchers caution that even with their rudimentary network operation, practical applications for quantum networking remain a long way off.

"The controlled transfer of single quanta between remote quantum memories is an important step toward distributed quantum networks," said Alex Kuzmich, the Cullen-Peck Assistant Professor in Georgia Tech's School of Physics. "But this is still a building block. It will take a lot of steps and several more years for this to happen in a practical way."

Slightly more than a year ago in a paper published in the journal Science, Kuzmich and collaborator Dzmitry Matsukevich described transferring atomic state information from two different clouds of rubidium atoms onto a single photon. That work was the first time that quantum information had been transferred from matter to light.

In the new paper in Nature, Kuzmich, Kennedy and collaborators Thierry Chaneliere, Dzmitry Matsukevich, Stewart Jenkins, Shau-Yu Lan carry the earlier operation one step farther by storing and retrieving single photons from clouds of ultra-cold rubidium atoms -- demonstrating the storage of light-based information in matter.

From an applications perspective, the storage and retrieval of a qubit state in an atomic quantum memory node is an important step towards a "quantum repeater." Such a device would be necessary for transmitting quantum information long distances through optical fibers.

Existing telecommunications networks use classical light to transmit information through optical fibers. To carry information long distances, such signals must be periodically boosted by repeater stations that cannot be used for quantum networking.

The Georgia Tech researchers began their experiment by exciting a cloud of rubidium atoms stored in a magneto-optical trap at temperatures approaching absolute zero. The excitation can generate a photon -- but only infrequently, perhaps once every five seconds. Because it is in resonance with the atoms from which it was created, the photon carries specific quantum information about the excitation state of the atoms.

The photon was sent down approximately 100 meters of optical fiber to a second very cold cloud of trapped rubidium atoms. The researchers controlled the velocity of the photon in the second cloud by an intense control laser beam. Once the photon was inside the cloud, the control beam was switched off, allowing the photon to come to a halt inside the dense ensemble of atoms.

"The information from the photon is stored in the state of excitation of many atoms of the second ensemble," explained Jenkins, a graduate student who specializes in quantum optics theory. "Each atom in the ensemble is slightly flipped, so the atomic ensemble is sharing this information -- which is really information about spin."

After allowing the photon to be stored in the atomic cloud for time periods that exceeded 10 microseconds, the control beam was turned back on, allowing the photon to re-emerge from the atomic cloud. The researchers then compared the quantum information carried on the photon to verify that it matched the information carried into the cloud.

"When the single photon is generated, the first atomic ensemble is in an excited state," explained Chaneliere, a postdoctoral fellow in the Kuzmich lab. "When we read the information from the second ensemble and find a coincidence between its excitation and the excitation of the first ensemble, we have demonstrated storage of the photon."

To confirm the single photon character of the storage, the researchers used anti-correlation measurements involving three single photon detectors.

Storage of the photon for even a brief period of time within the atomic ensemble depends on careful control of potentially-interfering magnetic fields. And it works only because the rubidium atoms are so cold that their motion is limited.

"Quantum information is very fragile," said Chaneliere. "If you have a magnetic field, the atoms spin out of phase, and you can lose the information. For the moment, that is certainly a limitation on the use of this for quantum networking."

For the future, the team hopes to add additional nodes to their rudimentary quantum network and encode useful information onto their photons.

They must also increase the probability of creating single photons from the first atomic cloud. While gathering data, the researchers excited the first cloud of atoms approximately 200 times a second. A single photon was created about once every five seconds, reported Matsukevich, a graduate student in the Kuzmich lab.

Highlighting the speed at which progress is being made toward quantum networking, Kuzmich, Kennedy and their team have more recently demonstrated entanglement between two atomic qubits separated by a distance of 5.5 meters. The work is described in a paper submitted to the journal Physical Review Letters.

"This entanglement would be important to a number of applications, including quantum cryptography," said Kuzmich. "We have generated entanglement of atomic qubits. We also showed that we can take this entanglement and map it from atoms to photons."

###

Research by Kuzmich, Kennedy and their colleagues has been supported by NASA, the Office of Naval Research Young Investigator Program, National Science Foundation, Research Corporation, Alfred P. Sloan Foundation, and Cullen-Peck Chair.



Story Source:

The above story is based on materials provided by Georgia Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Georgia Institute of Technology. "Quantum Memory: Physicists Demonstrate Storage And Retrieval Of Single Photons Between Remote Memories." ScienceDaily. ScienceDaily, 13 December 2005. <www.sciencedaily.com/releases/2005/12/051213082424.htm>.
Georgia Institute of Technology. (2005, December 13). Quantum Memory: Physicists Demonstrate Storage And Retrieval Of Single Photons Between Remote Memories. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2005/12/051213082424.htm
Georgia Institute of Technology. "Quantum Memory: Physicists Demonstrate Storage And Retrieval Of Single Photons Between Remote Memories." ScienceDaily. www.sciencedaily.com/releases/2005/12/051213082424.htm (accessed April 23, 2014).

Share This



More Matter & Energy News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is North Korea Planning Nuclear Test #4?

Is North Korea Planning Nuclear Test #4?

Newsy (Apr. 22, 2014) South Korean officials say North Korea is preparing to conduct another nuclear test, but is Pyongyang just bluffing this time? Video provided by Newsy
Powered by NewsLook.com
China Falls for 4x4s at Beijing Auto Show

China Falls for 4x4s at Beijing Auto Show

AFP (Apr. 22, 2014) The urban 4x4 is the latest must-have for Chinese drivers, whose conversion to the cult of the SUV is the talking point of this year's Beijing auto show. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Lytro Introduces 'Illum,' A Professional Light-Field Camera

Lytro Introduces 'Illum,' A Professional Light-Field Camera

Newsy (Apr. 22, 2014) The light-field photography engineers at Lytro unveiled their next innovation: a professional DSLR-like camera called "Illum." Video provided by Newsy
Powered by NewsLook.com
3 Reasons Why Harley Davidson Is Selling Tons of Epic Hogs

3 Reasons Why Harley Davidson Is Selling Tons of Epic Hogs

TheStreet (Apr. 22, 2014) Sales of motorcycles have continued to ride back from the depths of hell known as the Great Recession. Excluding scooters, sales of motorcycles increased 3% in 2013. In units, however, at 465,000 sold last year, the total remained about 50% below the peak hit in 2007. Industry leader Harley Davidson’s shareholders have benefited both by the industry recovery and positive headlines emanating from the company. Belus Capital Advisors CEO Brian Sozzi takes you beyond the headlines of the motorcycle maker. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins