Featured Research

from universities, journals, and other organizations

Mapping Orion's Winds

Date:
January 16, 2006
Source:
Vanderbilt University
Summary:
For the past few months, Bob O'Dell has been mapping the winds blowing in the Orion Nebula, the closest stellar nursery similar to the one in which the Sun was born. New data from the Hubble Orion Heritage Program, a major observational effort by the Hubble Space Telescope in 2004 and 2005, have given the Vanderbilt astronomer the information he needs to measure the stellar winds with unprecedented detail.

The area of the Orion Nebula in the white box is enlarged to show some of the hundreds of shock waves that crisscross the region.
Credit: Courtesy of Robert O’Dell

For the past few months, Bob O'Dell has been mapping the winds blowing in the Orion Nebula, the closest stellar nursery similar to the one in which the sun was born.

Related Articles


New data from the Hubble Orion Heritage Program, a major observational effort by the Hubble Space Telescope in 2004 and 2005, have given the Vanderbilt astronomer the information he needs to measure the stellar winds with unprecedented detail, and he reported his early results on Jan. 11 at the annual meeting of the American Astronomical Society in Washington D.C.

"Determining how stellar winds interact with the ambient material in stellar nurseries like Orion is a critical factor in understanding the process of star creation," says O'Dell, distinguished research professor of astrophysics and an international authority on Orion.

All stars, including the Sun, give off a stream of particles as they burn. In young, hot stars like those that form the "Trapezium" at the heart of Orion this stream of particles is millions of times more dense and energetic than the solar wind. Newborn stars, which are still shrouded in thick veils of dust and gas, often eject gas and dust from their polar regions in narrow jets, rather than broadcasting them outward in all directions. When these stellar winds impact floating clouds of dust and gas, they produce shock waves that erode and shape the clouds in a fashion similar to the way in which terrestrial winds sculpt sand dunes. When they are strong enough, such shock waves also can compress the free-floating clouds of dust and gas, triggering the formation of new stars.

O'Dell is using these shock waves as celestial "wind socks" to plot the direction of these winds in different parts of the nebula. By back-tracking older, more distant shock waves to their likely points of origin, the astronomer can also get an idea of how long major currents have been flowing.

"When you look closely enough, you see that the nebula is filled with hundreds of visible shock waves," the astronomer says.

In his analysis, O'Dell has identified three different types of shock waves:

  • Bow-shocks are stationary shock waves that are formed by the collision of two steady winds and are excellent indicators of wind direction. They are present near the hottest stars in the center of the nebula where they show winds flowing outward at velocities of thousands of kilometers per second. They are also present in the outer nebula where they are produced by low velocity stellar winds of tens of kilometers per second.
  • Jet-driven shocks are produced when narrow streams of gas and particles traveling at hundreds of kilometers per second pass through gas that is relatively stationary. There are many shockwaves of this type in the nebula that are produced by jets of material ejected by newly formed stars.
  • Warped shocks are jet-driven shocks located in areas where the ambient gas is not stationary but is moving in a cross current. This bends the jets and shocks into bow-like shapes.

Using these markers, the astronomer has mapped the outflow from two of the three regions of star formation in the nebula. Both of these regions, labeled BN-KL and Orion-South, are located behind the glowing region of the nebula where the light from the central stars ionizes the outer layers of the parent molecular cloud. The specific objects that are producing these winds in the two regions are not visible to optical telescopes but they stand out as hot spots in infrared images.

By tracking back the farthest shockwaves produced by these outflows, O'Dell has established that the winds blowing from BN-KL have been doing so for 900 to 1,100 years, while those from Orion-South have been going on for 200 to 1,500 years. These observations were made during 104 orbits of the Hubble and provide the most comprehensive picture ever obtained of the Orion Nebula. The data will be combined with other Hubble and ground-based telescope observations to create a widely available archive for research scientists interested in this region, in addition to acting as a base for a detailed study that should provide new insights into the conditions required for creating stars like the sun.

###

For more news about Vanderbilt research, visit Exploration, Vanderbilt's online research magazine, at www.exploration.vanderbilt.edu


Story Source:

The above story is based on materials provided by Vanderbilt University. Note: Materials may be edited for content and length.


Cite This Page:

Vanderbilt University. "Mapping Orion's Winds." ScienceDaily. ScienceDaily, 16 January 2006. <www.sciencedaily.com/releases/2006/01/060115174310.htm>.
Vanderbilt University. (2006, January 16). Mapping Orion's Winds. ScienceDaily. Retrieved November 25, 2014 from www.sciencedaily.com/releases/2006/01/060115174310.htm
Vanderbilt University. "Mapping Orion's Winds." ScienceDaily. www.sciencedaily.com/releases/2006/01/060115174310.htm (accessed November 25, 2014).

Share This


More From ScienceDaily



More Space & Time News

Tuesday, November 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Feast Your Eyes: Lamb Chop Sent Into Space from UK

Feast Your Eyes: Lamb Chop Sent Into Space from UK

Reuters - Light News Video Online (Nov. 25, 2014) Take a stab at this -- stunt video shows a lamb chop's journey from an east London restaurant over 30 kilometers into space. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Soyuz Spacecraft Docks With International Space Station: NASA

Soyuz Spacecraft Docks With International Space Station: NASA

AFP (Nov. 24, 2014) A Russian Soyuz spacecraft carrying Italy's first female astronaut safely docks with the International Space Station, according to NASA. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Multi-National Crew Safely Docks at Space Station

Multi-National Crew Safely Docks at Space Station

Reuters - US Online Video (Nov. 24, 2014) A Russian Soyuz rocket delivers a multi-national trio to the International Space Station. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Raw: Soyuz Docks With Int'l Space Station

Raw: Soyuz Docks With Int'l Space Station

AP (Nov. 23, 2014) A Russian capsule carrying three astronauts from Russia, the United States and Italy has arrived at the International Space Station. (Nov. 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins