New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Big Bang

The Big Bang is the cosmological model of the universe whose primary assertion is that the universe has expanded into its current state from a primordial condition of enormous density and temperature. The term is also used in a narrower sense to describe the fundamental "fireball" that erupted at or close to an initial timepoint in the history of our observed spacetime.

Theoretical support for the Big Bang comes from mathematical models. These models show that a Big Bang is consistent with general relativity and with the cosmological principle, which states that the properties of the universe should be independent of position or orientation.

Observational evidence for the Big Bang includes the analysis of the spectrum of light from galaxies, which reveal a shift towards longer wavelengths proportional to each galaxy's distance in a relationship described by Hubble's law. Combined with the assumption that observers located anywhere in the universe would make similar observations (the Copernican principle), this suggests that space itself is expanding. The next most important observational evidence was the discovery of cosmic microwave background radiation in 1964. This had been predicted as a relic from when hot ionized plasma of the early universe first cooled sufficiently to form neutral hydrogen and allow space to become transparent to light, and its discovery led to general acceptance among physicists that the Big Bang is the best model for the origin and evolution of the universe. A third important line of evidence is the relative proportion of light elements in the universe, which is a close match to predictions for the formation of light elements in the first minutes of the universe, according to Big Bang nucleosynthesis.

Extrapolation of the expansion of the universe backwards in time using general relativity yields an infinite density and temperature at a finite time in the past. This singularity signals the breakdown of general relativity. How closely we can extrapolate towards the singularity is debated—certainly not earlier than the Planck epoch. The early hot, dense phase is itself referred to as "the Big Bang", and is considered the "birth" of our universe. Based on measurements of the expansion using Type Ia supernovae, measurements of temperature fluctuations in the cosmic microwave background, and measurements of the correlation function of galaxies, the universe has a calculated age of 13.7 ± 0.2 billion years.

The earliest phases of the Big Bang are subject to much speculation. In the most common models, the universe was filled homogeneously and isotropically with an incredibly high energy density, huge temperatures and pressures, and was very rapidly expanding and cooling. Approximately 10−35 seconds into the expansion, a phase transition caused a cosmic inflation, during which the universe grew exponentially. After inflation stopped, the universe consisted of a quark-gluon plasma, as well as all other elementary particles. Temperatures were so high that the random motions of particles were at relativistic speeds, and particle-antiparticle pairs of all kinds were being continuously created and destroyed in collisions. At some point an unknown reaction called baryogenesis violated the conservation of baryon number, leading to a very small excess of quarks and leptons over antiquarks and anti-leptons — of the order of 1 part in 30 million. This resulted in the predominance of matter over antimatter in the present universe.

Related Stories
 


Space & Time News

February 2, 2026

NASA’s Perseverance rover has just made history by driving across Mars using routes planned by artificial intelligence instead of human operators. A vision-capable AI analyzed the same images and terrain data normally used by rover planners, ...
Hidden lava tunnels on the Moon and Mars could one day shelter human explorers, offering natural protection from radiation and space debris. A European research team has unveiled a bold new mission concept that uses three different robots working ...
Low-Earth orbit is more crowded—and fragile—than it looks. Satellites constantly weave past each other, burning fuel and making dozens of evasive maneuvers every year just to stay safe. A major solar storm could disable navigation and ...
Physicists have unveiled a new way to simulate a mysterious form of dark matter that can collide with itself but not with normal matter. This self-interacting dark matter may trigger a dramatic collapse inside dark matter halos, heating and ...
When scientists sent bacteria-infecting viruses to the International Space Station, the microbes did not behave the same way they do on Earth. In microgravity, infections still occurred, but both viruses and bacteria evolved differently over time. ...
A team of physicists has discovered a surprisingly simple way to build nuclear clocks using tiny amounts of rare thorium. By electroplating thorium onto steel, they achieved the same results as years of work with delicate crystals — but far more ...
Nearly everything in the universe is made of mysterious dark matter and dark energy, yet we can’t see either of them directly. Scientists are developing detectors so sensitive they can spot particle interactions that might occur once in years or ...
A distant pulsar’s radio signal flickers as it passes through space, much like stars twinkle in Earth’s atmosphere. By monitoring this effect for 10 months, researchers watched the pattern slowly evolve as gas, Earth, and the pulsar all moved. ...
Mars looks familiar from afar, but surviving there means creating a protective oasis in a hostile world. Instead of shipping construction materials from Earth, researchers are exploring how to use Martian soil as the raw ingredient. Two tough ...
A physicist has proposed a bold experiment that could allow gravitational waves to be manipulated using laser light. By transferring minute amounts of energy between light and gravity, the ...
As we age, our immune system quietly loses its edge, and scientists have uncovered a surprising reason why. A protein called platelet factor 4 naturally declines over time, allowing blood stem cells to multiply too freely and drift toward unhealthy, ...
Scientists are digging into the hidden makeup of carbon-rich asteroids to see whether they could one day fuel space exploration—or even be mined for valuable resources. By analyzing rare meteorites ...

Latest Headlines

updated 12:56 pm ET