Featured Research

from universities, journals, and other organizations

Fighting Sound With Sound, New Modeling Technique Could Quiet Aircraft

Date:
February 24, 2006
Source:
Princeton University
Summary:
Newly published research by a Princeton engineer suggests that understanding how air travels across the sunroof of a car may one day make jet engines less noisy. This research may ultimately lead to modifications of jet engines to make them quieter as they fly over neighborhoods. It also has important military applications.

A screenshot of Rowley's cavity-flow simulations.
Credit: Image courtesy of Princeton University

Newly published research by a Princeton engineer suggests that understanding how air travels across the sunroof of a car may one day make jet engines less noisy.

Clarence Rowley, an assistant professor of mechanical and aerospace engineering, did not actually conduct his experiments on a sunroof. Rather, he and collaborators used computer simulations and subsonic wind tunnels at Princeton and at the U.S. Air Force Academy in Colorado Springs, to experiment with models that resembled the open sunroof of a speeding car.

Rowley showed that his simulations could predict how sunroof air flow would behave under various conditions. Just as important, he figured out how to negate the noise that it produced. Rowley's findings are published in the January issues of the Annual Reviews of Fluid Mechanics and the Journal of Fluid Mechanics.

This research may ultimately lead to modifications of jet engines to make them quieter as they fly over neighborhoods. The research also has important military applications. For example, it would enable stealth aircraft to fly faster because it would reduce buffeting when doors of a weapons bay are open. And Rowley is currently using insights garnered from this work to help develop ultrasmall, unmanned aircraft that would be useful for surveillance or search-and-rescue missions.

Rowley's task was not an easy one. To precisely model the air current would have required solving more than 2 million equations. Solving these equations by themselves is not too great a challenge for today's computers, but manipulating them to figure out how to make the air flow quieter would require far more calculation.

"Basically, it would have been computationally impossible," Rowley said.

So he took an unusual approach. He selectively picked mathematical tools from three different disciplines -- dynamical systems, control theory and fluid mechanics -- and yoked them together to come up with a computer simulation that, by solving only four equations, could approximate almost identically the answer to the problem that normally would have taken 2 million equations to figure out.

Once he figured out the model, Rowley fought sound with sound.

Rowley focused on the layer of air just above his simulated sunroof, where faster moving air "shears" away from slower moving air. "This shear layer flaps and up and down like a flag in the wind," Rowley said.

Each time this layer of air flaps down and hits the leading edge of the sunroof, it makes what scientists call an acoustic wave (most people just call this noise).

In his computer model and in wind-tunnel experiments with collaborator David Williams of the Illinois Institute of Technology, Rowley placed a speaker at the front end of his sunroof and a microphone at the rear of the roof. The microphone monitored the flapping and fed this information to a controller. The controller, relying on predictions from Rowley's model, then sent an opposing signal to the speaker, which is not much different than one found on a typical stereo.

"The physical mechanism is actually very simple," Rowley said. "When the flag wants to push up we pull it down; when it wants to pull up we push it down. This is what makes it quiet."

The same principles can be applied to quiet down a jet engine or silence the open bays of a military craft. Rowley does not have immediate plans to promote the technique to the automotive industry to make quieter sunroofs, but he is is applying the knowledge to a new project involving tiny unmanned airplanes.

As part of a joint research project led by Caltech, Rowley is doing computational modeling, as well as building a controller, for aircraft that are the size of a typical model airplane. One day, the researchers hope, these aircraft will be able to fly with the speed of a bird and maneuver themselves with the three-dimensional agility of an insect.

###

This work was funded by the U.S. Air Force Office of Scientific Research.

Full citations for the Rowley papers:

Rowley, C.W. and D.R. Williams [2006] Dynamics and control of high-Reynolds number flow over cavities. Annual Reviews of Fluid Mechanics, 38:251-276, Jan 2006

Rowley, C.W., D.R. Williams, T. Colonius, R.M. Murray, and D.G. MacMartin [2006] Linear models for control of cavity flow oscillations. J. Fluid Mech., 547:317-330, Jan 2006.


Story Source:

The above story is based on materials provided by Princeton University. Note: Materials may be edited for content and length.


Cite This Page:

Princeton University. "Fighting Sound With Sound, New Modeling Technique Could Quiet Aircraft." ScienceDaily. ScienceDaily, 24 February 2006. <www.sciencedaily.com/releases/2006/02/060224102913.htm>.
Princeton University. (2006, February 24). Fighting Sound With Sound, New Modeling Technique Could Quiet Aircraft. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2006/02/060224102913.htm
Princeton University. "Fighting Sound With Sound, New Modeling Technique Could Quiet Aircraft." ScienceDaily. www.sciencedaily.com/releases/2006/02/060224102913.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) — If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) — Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) — British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Portable Breathalyzer Gets You Home Safely

Portable Breathalyzer Gets You Home Safely

Buzz60 (Oct. 21, 2014) — Breeze, a portable breathalyzer, gets you home safely by instantly showing your blood alcohol content, and with one tap, lets you call an Uber, a cab or a friend from your contact list to pick you up. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins