Featured Research

from universities, journals, and other organizations

Multiple Sclerosis Research Into Reparative Cells Offers New Avenue For Fighting Disease

Date:
March 7, 2006
Source:
UT Southwestern Medical Center
Summary:
Plaques that form around the nerve cells of people with multiple sclerosis are apparently what disable people with the disease. But partly developed reparative cells within the plaques provide hope for a treatment, a UT Southwestern physician reports in the New England Journal of Medicine.

Dr. Elliot Frohman, professor of neurology and ophthalmology, has authored a comprehensive review of multiple sclerosis in the New England Journal of Medicine, the first one published in the Journal in five years.
Credit: Image courtesy of UT Southwestern Medical Center

Plaques that form around the nerve cells of people with multiple sclerosis are apparently what disable people with the disease. But partly developed reparative cells within the plaques provide hope for a treatment, a UT Southwestern physician reports in the New England Journal of Medicine.

Dr. Elliot Frohman, professor of neurology and ophthalmology, is lead author on an overview of MS. It is the first time in five years that Journal editors have had researchers provide an overview of the debilitating disease.

Presently, the primary focus of research is on plaques, which are now known to contain certain predictable features consistent with tissue injury, such as loss of nerve insulation, scarring, inflammation and loss of the ability of nerves to transmit electrical and chemical information to other nerves.

"Recognizing these different injury cascades has catalyzed novel investigations into strategies for treatment that are aimed at promoting preservation of tissue architecture (neuroprotection) and even potentially neurorestoration," said Dr. Frohman, who directs the Multiple Sclerosis Program and Clinical Center at UT Southwestern and holds the Irene Wadel and Robert I. Atha Distinguished Chair in Neurology and the Kenney Marie Dixon-Pickens Distinguished Professorship in Multiple Sclerosis Research.

MS is an autoimmune disease in which the body attacks its own tissues and afflicts about 400,000 Americans and 2.5 million people worldwide. People with the disease develop problems with coordination and eyesight and, in some cases, lose mental sharpness.

In MS, nerve cells lose their insulating fatty covering, called myelin. Myelin comes from nearby cells called oligodendrocytes, which send out projections that wrap around nerve cells. Myelin allows electrical signals to travel quickly and with high fidelity.

The damaged area becomes surrounded by plaques, which contain a wide variety of cells. Although much of the content of a plaque is harmful to nerves, there are some cells that provide hope, Dr. Frohman said.

Even though the oligodendrocytes are damaged, there exists a reservoir of oligodendrocyte precursor cell, or OPCs, left over from development that could be activated to repair the damage, he said. The problem is how to trigger them to grow.

"Those are progenitor cells that will grow up into mature cells," Dr. Frohman said. "We know more why they don't grow up."

Proteins called repressor proteins keep the OPCs in an immature state. Activating the OPC, however, might help a severed or demyelinated nerve in the central nervous system become the target for repair.

Treatments for MS are difficult, but researchers are examining the regulation of the genes Nogo, Lingo-1, Jagged and Notch for potential treatment.

The proteins Nogo and Lingo-1 appear to have the ability to block nerve cells from growing, so if they can be blocked, the nerve cells might be able to recover.

"With the advent of new technologies, we have a much better understanding of the events that occur during the MS disease process," said co-author Dr. Michael Racke, professor of neurology and in the Center for Immunology.

"In particular, we will see a much greater emphasis on the molecular events that occur during MS and will likely see new strategies to intervene in the disease." Dr. Racke holds the Lois C.A. and Darwin E. Smith Distinguished Chair in Neurological Mobility Research.

Dr. Cedric Raine at the Albert Einstein College of Medicine was also an author of the review.

The paper was supported in part by the National Multiple Sclerosis Society, Once Upon A Time …, the Hawn Foundation and the Department of Health and Human Services.


Story Source:

The above story is based on materials provided by UT Southwestern Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

UT Southwestern Medical Center. "Multiple Sclerosis Research Into Reparative Cells Offers New Avenue For Fighting Disease." ScienceDaily. ScienceDaily, 7 March 2006. <www.sciencedaily.com/releases/2006/03/060306091015.htm>.
UT Southwestern Medical Center. (2006, March 7). Multiple Sclerosis Research Into Reparative Cells Offers New Avenue For Fighting Disease. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2006/03/060306091015.htm
UT Southwestern Medical Center. "Multiple Sclerosis Research Into Reparative Cells Offers New Avenue For Fighting Disease." ScienceDaily. www.sciencedaily.com/releases/2006/03/060306091015.htm (accessed October 22, 2014).

Share This



More Mind & Brain News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com
Portable Breathalyzer Gets You Home Safely

Portable Breathalyzer Gets You Home Safely

Buzz60 (Oct. 21, 2014) Breeze, a portable breathalyzer, gets you home safely by instantly showing your blood alcohol content, and with one tap, lets you call an Uber, a cab or a friend from your contact list to pick you up. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Your Birth Season Might Determine Your Temperament

Your Birth Season Might Determine Your Temperament

Newsy (Oct. 20, 2014) A new study says the season you're born in can determine your temperament — and one season has a surprising outcome. Video provided by Newsy
Powered by NewsLook.com
Movies Might Desensitize Violence For Parents, Not Just Kids

Movies Might Desensitize Violence For Parents, Not Just Kids

Newsy (Oct. 20, 2014) A study suggests that parents become desensitized to violent movies as well as children, which leads them to allow their kids to view violent films. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins