Featured Research

from universities, journals, and other organizations

Rice Bioengineers Pioneer Techniques For Knee Repair

Date:
March 28, 2006
Source:
Rice University
Summary:
A breakthrough self-assembly technique for growing replacement cartilage offers the first hope of replacing the entire articular surface of knees damaged by arthritis. The technique, developed at Rice University's Musculoskeletal Bioengineering Laboratory, is described in this month's issue of the journal Tissue Engineering. In follow-up research, Rice's team has used rabbit cells to grow the entire articular surface of the distal femur.

A breakthrough self-assembly technique for growing replacement cartilage offers hope of replacing the entire articular surface of knees damaged by arthritis. The technique, developed by Rice University bioengineer Kyriacos Athanasiou and postdoctoral researcher Jerry Hu involves a self-assembly method of growing replacement tissue. Using cells, Hu and Athanasiou have refined the technique to grow the entire articular surface of the lower femur. Each of these samples shown here were tailored three-dimensionally to fit a specific rabbit femur.
Credit: Jerry Hu/Rice University

A breakthrough self-assembly technique for growing replacement cartilage offers the first hope of replacing the entire articular surface of knees damaged by arthritis. The technique, developed at Rice University's Musculoskeletal Bioengineering Laboratory, is described in this month's issue of the journal Tissue Engineering.

Related Articles


"This has significant ramifications because we are now beginning to talk, for the first time, about the potential treatment of entire arthritic joints and not just small defects," said lead researcher and lab director Kyriacos Athanasiou, the Karl F. Hasselmann Professor of Bioengineering.

Athanasiou's new self-assembly method involves a break from conventional wisdom in bioengineering; almost all previous attempts to grow replacement transplant tissues involved the use of biodegradable implants that are seeded with donor cells and growth factors. These implants, which engineers refer to as scaffolds, foster the tissue growth process by acting as a template for new growth, but they always present a risk of toxicity due to the fact that they are made of materials that aren't naturally found in the body.

In the newly reported findings, Athanasiou and postdoctoral researcher Jerry Hu, using nothing but donor cells, grew dime-sized disks of cartilage with properties approaching those of native tissue. In a follow-up study due for publication soon, graduate student Christopher Revell refined the process to produce disks that are virtually identical to native tissue in terms of both mechanical and biochemical makeup. In a third, and perhaps most impressive breakthrough, Athanasiou and Hu used the self-assembly approach to grow the entire articular surface of the distal femur. Each of these unbroken samples were tailored three-dimensionally to fit a specific rabbit femur.

"If you told me 10 years ago that we would be making entire articular end caps via self assembly I would have said you were crazy," said Athanasiou. "The fact that we can do this is an indication of how far the discipline of tissue engineering has progressed."

Unlike cartilage, most tissues in our bodies -- including skin, blood vessels and bone -- regenerate themselves constantly. Tissue engineers try to capitalize on the body's own regenerative powers to grow replacement tissues that can be transplanted without risk of rejection. Donor cells from the patient are used as a starting place to eliminate rejection risks.

Most tissue engineering involves honeycombed plastic templates or hydrogels called scaffolds that are used to guide colonies of donor cells. Donor cells can be either adult stem cells or other immature cells. Athanasiou's latest work was done using chondrocytes, or cartilage cells.

Athanasiou, a former president of the international Biomedical Engineering Society, helped pioneer the development of coin-sized scaffolds in the early 1990s that are now the state-of-the-art clinical option for repairing small defects in articular knee cartilage.

His lab is also working on techniques to grow replacement knee menisci, the kidney shaped wedges of cartilage that sit between the femur and tibia and absorb the compressive shock that the bones undergo during walking and running. Over the past 18 months, he and his students Adam Aufderheide and Gwen Hoben have perfected methods of growing meniscus-shaped pieces of cartilage, but they are still trying to perfect the mechanical strength of the engineered meniscus tissue, which must be able to withstand up to an astounding 2,400 pounds per square inch of compressive pressure.

Athanasiou's research is funded by Rice University and the National Institutes of Health.



Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Cite This Page:

Rice University. "Rice Bioengineers Pioneer Techniques For Knee Repair." ScienceDaily. ScienceDaily, 28 March 2006. <www.sciencedaily.com/releases/2006/03/060327214745.htm>.
Rice University. (2006, March 28). Rice Bioengineers Pioneer Techniques For Knee Repair. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2006/03/060327214745.htm
Rice University. "Rice Bioengineers Pioneer Techniques For Knee Repair." ScienceDaily. www.sciencedaily.com/releases/2006/03/060327214745.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rural India's Low-Cost Sanitary Pad Revolution

Rural India's Low-Cost Sanitary Pad Revolution

AFP (Nov. 28, 2014) — One man hopes his invention -– a machine that produces cheap sanitary pads –- will help empower Indian women. Duration: 01:51 Video provided by AFP
Powered by NewsLook.com
Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins