Featured Research

from universities, journals, and other organizations

3D Ultrasound Device Poised To Advance Minimally Invasive Surgery

Date:
March 30, 2006
Source:
Duke University
Summary:
Three-dimensional ultrasound probes built by researchers at Duke's Pratt School of Engineering have imaged the beating hearts of dogs. The engineers said their demonstration showed that the probes could give surgeons a better view during human endoscopic surgeries in which operations are performed through tiny "keyhole" incisions.

DURHAM, N.C. -- Three-dimensional ultrasound probes built by researchers at Duke's Pratt School of Engineering have imaged the beating hearts of dogs. The engineers said their demonstration showed that the probes could give surgeons a better view during human endoscopic surgeries in which operations are performed through tiny "keyhole" incisions.

If the probes prove beneficial in human testing, the advance might lead to more precise and safer endoscopic surgeries, said the Duke engineers. The researchers reported their advance in the latest issue of the journal Ultrasonic Imaging, which was issued in late March 2006, but dated July 2005. The research was supported by the National Institutes of Health and the National Science Foundation.

"Surgeons now use optical endoscopes or two-dimensional ultrasound when conducting minimally invasive surgery," said lead engineer Stephen Smith, a professor of biomedical engineering at the Pratt School. Optical endoscopes are thin tubes with a tiny video camera that surgeons can insert directly into the abdomen or chest through small incisions.

"With our scanner, doctors could see the target lesion or a portion of an organ in a real-time three-dimensional scan," Smith said. "They would have the option of viewing the tissue in three perpendicular cross-sectional slices simultaneously or in the same way a camera would see it -- except that a camera can't see through blood and tissue."

The technology has yet to be tested in human patients, but its success in dogs makes it ready for clinical trials, according to the researchers.

Endoscopic surgical methods have the advantage of reduced postoperative pain and a faster recovery. However, the two-dimensional ultrasound imaging now available offers surgeons only a limited view, which can impede their depth perception and make such procedures difficult to master.

"Our ultrasound device could really advance the use of minimally invasive surgery," Smith said. "By allowing surgeons to essentially see through the body to the site of interest in three dimensions, the scanner could make such surgeries easier to perform and eventually more precise." Such surgeries also might be cheaper and less traumatic as they could be performed in less time and, in some cases, without the need of general anesthesia, he said.

Duke developed the first 3D ultrasound scanner in 1987 for imaging the heart from outside the body. As technology enabled ever smaller ultrasound arrays, the researchers engineered probes that could fit inside catheters threaded through blood vessels to image the vasculature and heart from the inside out.

The current advance relies on 500 tiny cables and sensors packed into a tube 12 millimeters in diameter -- the size required to fit into surgical instruments, called trocars, that surgeons use to allow easy exchange of laparoscopic tools. By comparison, most two-dimensional ultrasound probes use just 64 cables.

"It's a feat of technology and craftsmanship to build these devices," Smith said. "More cables translate into better image quality. The scanners achieve a 3D moving image instantaneously, with no reconstruction."

Each cable carries electrical signals from the scanner to the sensors at the tip of the tube, which in turn send pulses of acoustic waves into the surrounding tissue, Smith explained. The sensors then pick up the returning echoes and relay them back to the scanner where they produce an image of the moving tissue or organ. The scanner uses parallel processing to listen to echoes of each pulse in 16 directions at once.

The laparoscopic ultrasound probes have so far been applied only to heart imaging, in which they may be particularly useful for monitoring heart function during minimally invasive cardiac surgery, Smith said. Current methods often monitor the heart with a 2D ultrasound endoscope probe down the throat, a method that requires general anesthesia.

"If physicians instead used the laparoscopic ultrasonography imager, they could monitor function for hours through a tiny incision -- possibly without anesthesia," Smith said. "That would be a big step forward."

The 3D ultrasound probes also might help guide physicians during cardiac ablation therapy, he added. In such procedures, cardiologists use catheters to burn specific locations on the surface of the heart in patients with atrial fibrillation, a disorder characterized by an abnormal heart rhythm.

In order to demonstrate this possible use, the researchers produced real-time 3D images of a dog's right pulmonary veins -- sites that are targeted in treating atrial fibrillation.

Similar 3D ultrasound devices also hold promise for minimally invasive abdominal and brain surgery applications, Smith said.

Collaborators on the study include research and development engineer Edward Light, assistant professor of pediatrics Salim Idriss, Pratt undergraduate Kathryn Sullivan and associate professor of biomedical engineering Patrick Wolf, all of Duke.



Story Source:

The above story is based on materials provided by Duke University. Note: Materials may be edited for content and length.


Cite This Page:

Duke University. "3D Ultrasound Device Poised To Advance Minimally Invasive Surgery." ScienceDaily. ScienceDaily, 30 March 2006. <www.sciencedaily.com/releases/2006/03/060330161609.htm>.
Duke University. (2006, March 30). 3D Ultrasound Device Poised To Advance Minimally Invasive Surgery. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2006/03/060330161609.htm
Duke University. "3D Ultrasound Device Poised To Advance Minimally Invasive Surgery." ScienceDaily. www.sciencedaily.com/releases/2006/03/060330161609.htm (accessed September 16, 2014).

Share This



More Health & Medicine News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Study Links Male-Pattern Baldness To Prostate Cancer

Study Links Male-Pattern Baldness To Prostate Cancer

Newsy (Sep. 16, 2014) New findings suggest men with a certain type of baldness at age 45 are 39 percent more likely to develop aggressive prostate cancer. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins