Featured Research

from universities, journals, and other organizations

Northwestern Team Develops 'MRI' For Fuel Cells

Date:
June 18, 2006
Source:
Northwestern University
Summary:
As gasoline prices top $3 a gallon in major cities, the drive toward increasing energy efficiency and reducing air pollution has accelerated, and the development of fuel cells has become a major focus worldwide. Now a research team led by a Northwestern University materials scientist has produced the first three-dimensional images of the interior of a fuel cell -- providing a new tool for the study and development of fuel cells.

As gasoline prices top $3 a gallon in major cities, the drive toward increasing energy efficiency and reducing air pollution has accelerated, and the development of fuel cells has become a major focus worldwide.

Knowing how fuel cells work is key to improving their performance and reducing the cost of their production. Now a research team led by Scott A. Barnett, professor of materials science and engineering at Northwestern University, has produced the first three-dimensional images of the interior of a fuel cell -- providing a new tool for the study and development of fuel cells.

The researchers' three-dimensional reconstruction of a solid oxide fuel cell anode was reported in a paper published this month by the journal Nature Materials. (A solid oxide fuel cell efficiently converts fuels such as hydrogen and natural gas directly into electricity; Barnett's group also recently reported a similar fuel cell that works with a liquid transportation fuel -- iso-octane, a high-purity compound similar to gasoline.)

"Much like magnetic resonance imaging produces a view inside the human body, we now can look inside fuel cells," said Barnett. "The dual-beam focused-ion-beam microscope used in the study provides much higher resolution than an MRI, showing nanometer-scale features. These pictures will help us and other researchers to unravel how fuel cells work so they can eventually be improved and made to work longer without failing."

The imaging technique also will enable manufacturers to maintain quality by checking batches of fuel cells for any structural changes that might hurt the fuel cells' characteristics.

The materials comprising fuel cells have become increasingly sophisticated, both in composition and microstructure. Determining this microstructure is a critical, yet usually missing, link between materials properties and processing and electrode performance, said Barnett. Current methods of microstructural analysis, such as scanning electron microscopy, provide only two-dimensional images of the microstructure, limiting understanding of how regions are interconnected in three-dimensional space.

A fuel cell is like a battery that can be replenished with fresh fuel. It consists of two electrodes sandwiched around an electrolyte material that conducts ions between them. Oxygen enters at the cathode, where it combines with electrons and is split into ions that travel through the electrolyte to react with fuel at the anode. Fuel cells are environmentally friendly: water and carbon dioxide are the only by-products. In the process, the oxygen ions traversing the electrolyte produce a useful current.

In addition to Barnett, other authors on the paper are James R. Wilson (lead author), Worawarit Kobsiriphat, Robert Mendoza and Peter W. Voorhees, all from Northwestern; Hsun-Yi Chen and Katsuyo Thornton, from the University of Michigan; Jon M. Hiller and Dean J. Miller, from Argonne National Laboratory; and Stuart B. Adler, from the University of Washington, Seattle.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Cite This Page:

Northwestern University. "Northwestern Team Develops 'MRI' For Fuel Cells." ScienceDaily. ScienceDaily, 18 June 2006. <www.sciencedaily.com/releases/2006/06/060618230917.htm>.
Northwestern University. (2006, June 18). Northwestern Team Develops 'MRI' For Fuel Cells. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2006/06/060618230917.htm
Northwestern University. "Northwestern Team Develops 'MRI' For Fuel Cells." ScienceDaily. www.sciencedaily.com/releases/2006/06/060618230917.htm (accessed August 23, 2014).

Share This




More Matter & Energy News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is It a Plane? No, It's a Hoverbike

Is It a Plane? No, It's a Hoverbike

Reuters - Business Video Online (Aug. 22, 2014) UK-based Malloy Aeronautics is preparing to test a manned quadcopter capable of out-manouvering a helicopter and presenting a new paradigm for aerial vehicles. A 1/3-sized scale model is already gaining popularity with drone enthusiasts around the world, with the full-sized manned model expected to take flight in the near future. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Coal Gas Boom in China Holds Climate Risks

Coal Gas Boom in China Holds Climate Risks

AP (Aug. 22, 2014) China's energy revolution could do more harm than good for the environment, despite the country's commitment to reducing pollution and curbing its carbon emissions. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Newsy (Aug. 21, 2014) Researchers found the scanners could be duped simply by placing a weapon off to the side of the body or encasing it under a plastic shield. Video provided by Newsy
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins