Featured Research

from universities, journals, and other organizations

MIT Sheds Light On How Tumor Cells Form

Date:
June 22, 2006
Source:
Massachusetts Institute of Technology
Summary:
MIT cancer researchers have discovered a process that may explain how some tumor cells form, a discovery that could one day lead to new therapies that prevent defective cells from growing and spreading.

Chromosomes (blue) are shown being pulled apart by microtubules (red). The two yellow spots are the organizing centers required for assembling microtubules. MIT researchers recently pinpointed two proteins that are key to normal cell division.
Credit: Image courtesy / Viji Draviam

MIT cancer researchers have discovered a process that may explain how some tumor cells form, a discovery that could one day lead to new therapies that prevent defective cells from growing and spreading.

Related Articles


The work was reported June 8 in the advance online issue of The EMBO Journal, a publication of the European Molecular Biology Organization (EMBO).

Tumor cells that grow aggressively often have an irregular number of chromosomes, the structures in cells that carry genetic information. The normal number of chromosomes in a human cell is 46, or 23 pairs. Aggressive tumor cells often have fewer or more than 23 pairs of chromosomes, a condition called aneuploidy.

To date it has not been clear how tumor cells become aneuploid.

"Checkpoint proteins" within cells work to prevent cells from dividing with an abnormal number of chromosomes, but scientists have been puzzled by evidence that aneuploidy can result even when these proteins appear to be normal.

What MIT researchers have discovered is a reason these checkpoint proteins may be unable to sense the defective cells, which tend to have very subtle errors in them. (These subtle errors are believed to be the cause of aneuploidy and the rapid growth of tumors.)

Before cells divide, individual chromosomes in each pair of chromosomes must attach to a set of tiny structures called microtubules. If they attach correctly, the checkpoint proteins give them the go-ahead to divide. If they don't, the checkpoint proteins are supposed to stop them from dividing.

"The checkpoint proteins are like referees in a tug-of-war contest," said Viji Draviam, a research scientist in MIT's Department of Biology and lead author of the paper. "They make sure that all chromosomes are lined up in the right places before the cell is allowed to divide."

Scientists have known about the function of checkpoint proteins for at least 20 years, and they have suspected that mutations in checkpoint proteins cause the irregular number of chromosomes in the aneuploid cells. But they have been perplexed by the infrequent occurrence of mutations in aneuploid tumors.

"It's puzzling that the suspected culprits -- the aneuploidy-inducing checkpoint mutations -- are rarely found at the scene of the crime, in the aneuploid tumors," Draviam said.

That lingering question prompted Draviam and her colleagues to study how two other key molecules -- a known tumor suppressor protein called APC and its partner protein EB1 -- work together to assure that cells divide normally.

They discovered that if they removed either protein from a cell or if they interrupted the way the proteins work together, the cell would become aneuploid. In other words, the checkpoint proteins need to sense that the APC and EB1 proteins both are present for normal cell division to take place.

"This is important because it is the first demonstration that interrupting the normal function of these proteins will cause the cell to become aneuploid," Draviam said. "Our research sheds light on what could go wrong to cause an irregular number of chromosomes in cells even when the checkpoint proteins appear to be functioning properly."

Draviam's co-authors are graduate students Irina Shapiro and Bree Aldridge and MIT Professor of Biology and Biological Engineering Peter Sorger.

The research was funded by the National Institutes of Health.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "MIT Sheds Light On How Tumor Cells Form." ScienceDaily. ScienceDaily, 22 June 2006. <www.sciencedaily.com/releases/2006/06/060622073655.htm>.
Massachusetts Institute of Technology. (2006, June 22). MIT Sheds Light On How Tumor Cells Form. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2006/06/060622073655.htm
Massachusetts Institute of Technology. "MIT Sheds Light On How Tumor Cells Form." ScienceDaily. www.sciencedaily.com/releases/2006/06/060622073655.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins