Featured Research

from universities, journals, and other organizations

New Ion Trap May Lead To Large Quantum Computers

Date:
July 7, 2006
Source:
National Institute of Standards and Technology
Summary:
NIST physicists have designed and built a novel electromagnetic trap for ions that could be easily mass produced to potentially make quantum computers large enough for practical use. The new trap may help scientists surmount what is currently the most significant barrier to building a working quantum computer -- scaling up components and processes that have been successfully demonstrated individually.

False-color images of 1, 2, 3, 6, and 12 magnesium ions loaded into NIST's new planar ion trap. Red indicates areas of highest fluorescence, or the centers of the ions. As more ions are loaded in the trap, they squeeze closer together, until the 12-ion string falls into a zig-zag formation. (Signe Seidelin and John Chiaverini/NIST)

Physicists at the National Institute of Standards and Technology (NIST) have designed and built a novel electromagnetic trap for ions that could be easily mass produced to potentially make quantum computers large enough for practical use. The new trap, described in the June 30 issue of Physical Review Letters,* may help scientists surmount what is currently the most significant barrier to building a working quantum computer—scaling up components and processes that have been successfully demonstrated individually.

Quantum computers would exploit the unusual behavior of the smallest particles of matter and light. Their theoretical ability to perform vast numbers of operations simultaneously has the potential to solve certain problems, such as breaking data encryption codes or searching large databases, far faster than conventional computers. Ions (electrically charged atoms) are promising candidates for use as quantum bits (qubits) in quantum computers. The NIST team, one of 18 research groups worldwide experimenting with ion qubits, previously has demonstrated at a rudimentary level all the basic building blocks for a quantum computer, including key processes such as error correction, and also has proposed a large-scale architecture.

The new NIST trap is the first functional ion trap in which all electrodes are arranged in one horizontal layer, a “chip-like” geometry that is much easier to manufacture than previous ion traps with two or three layers of electrodes. The new trap, which has gold electrodes that confine ions about 40 micrometers above the electrodes, was constructed using standard microfabrication techniques.

NIST scientists report that their single-layer device can trap a dozen magnesium ions without generating too much heat from electrode voltage fluctuations—also an important factor, because heating has limited the prospects for previous small traps. Microscale traps are desirable because the smaller the trap, the faster the future computer. Work is continuing at NIST and at collaborating industrial and federal labs to build single-layer traps with more complex structures in which perhaps 10 to 15 ions eventually could be manipulated with lasers to carry out logic operations.

The work was supported in part by the National Security Agency/Disruptive Technology Office (formerly Advanced Research and Development Activity).

Background on NIST quantum computing research: www.nist.gov/public_affairs/quantum/quantum_info_index.html.

*S. Seidelin, J. Chiaverini, R. Reichle, J.J. Bollinger, D. Leibfried, J. Britton, J.H. Wesenberg, R.B. Blakestad, R.J. Epstein, D.B. Hume, W.M. Itano, J.D. Jost, C. Langer, R. Ozeri, N. Shiga, and D.J. Wineland. 2006. A microfabricated surface-electrode ion trap for scalable quantum information processing. Physical Review Letters. June 30.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology. "New Ion Trap May Lead To Large Quantum Computers." ScienceDaily. ScienceDaily, 7 July 2006. <www.sciencedaily.com/releases/2006/07/060707020823.htm>.
National Institute of Standards and Technology. (2006, July 7). New Ion Trap May Lead To Large Quantum Computers. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2006/07/060707020823.htm
National Institute of Standards and Technology. "New Ion Trap May Lead To Large Quantum Computers." ScienceDaily. www.sciencedaily.com/releases/2006/07/060707020823.htm (accessed August 20, 2014).

Share This




More Computers & Math News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ballmer Leaves Microsoft's Board, Has Advice For Nadella

Ballmer Leaves Microsoft's Board, Has Advice For Nadella

Newsy (Aug. 19, 2014) In a letter to Microsoft CEO Satya Nadella, Ballmer said he's leaving the board of directors and offered tips on how the company can be successful. Video provided by Newsy
Powered by NewsLook.com
What Google Can Gain From Special Accounts For Children

What Google Can Gain From Special Accounts For Children

Newsy (Aug. 19, 2014) Google will reportedly offer official accounts for children younger than 13 years old. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: Ebola's Economic Impact Could Eclipse SARS

Breakingviews: Ebola's Economic Impact Could Eclipse SARS

Reuters - Business Video Online (Aug. 18, 2014) The virus ravaging Africa has yet to spread elsewhere. Yet Asia’s SARS crisis in 2003 showed how changes to behaviour can hurt the economy more than the actual disease, says Breakingviews' Una Galani. Video provided by Reuters
Powered by NewsLook.com
Twitter Users Up In Arms After 'Favorites' Show Up In Feeds

Twitter Users Up In Arms After 'Favorites' Show Up In Feeds

Newsy (Aug. 17, 2014) Twitter is testing a feature on some users that shows favorited tweets from people they follow in their own timeline, the same way a retweet appears. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins