Featured Research

from universities, journals, and other organizations

Reversing And Accelerating The Speed Of Light

Date:
July 21, 2006
Source:
Ames Laboratory
Summary:
Physicist Costas Soukoulis and his research group at the U.S. Department of Energy's Ames Laboratory are having the time of their lives making light travel backwards at negative speeds that appear faster than the speed of light.

Faster than the speed of light? This still image from a video simulation shows a pulse of light entering a fictitious, ideal metamaterial that does not disperse, or spread out, the light pulse into individual wave components with different velocities. Inside the metamaterial, the velocities of both the light pulse and the individual wave components are negative. This condition makes the light move 'backwards,' and the peak of the light pulse leave the metamaterial on the right-hand side before it enters on the left. Consequently, energy is transferred through the material faster than the vacuum speed of light, which is unphysical and violates physics laws, such as relativity and causality.
Credit: Image courtesy of Ames Laboratory

Physicist Costas Soukoulis and his research group at the U.S. Department of Energy’s Ames Laboratory on the Iowa State University campus are having the time of their lives making light travel backwards at negative speeds that appear faster than the speed of light. That, folks, is a mind-boggling 186,000 miles per second – the speed at which electromagnetic waves can move in a vacuum. And making light seem to move faster than that and in reverse is what Soukoulis, who is also an ISU Distinguished Professor of Liberal Arts and Sciences, said is “like rewriting electromagnetism.” He predicted, “Snell’s law on the refraction of light is going to be different; a number of other laws will be different.”

However, neither Soukoulis nor any other scientist involved in efforts to manipulate the direction and speed of light can do so with naturally occurring materials. The endeavor requires exotic, artificially created materials. Known as metamaterials, these substances can be manipulated to respond to electromagnetic waves in ways that natural materials cannot. Natural materials refract light, or electromagnetic radiation, to the right of the incident beam at different angles and speeds. However, metamaterials, also called left-handed materials, make it possible to refract light at a negative angle, so it emerges on the left side of the incident beam. This backward-bending characteristic of metamaterials allows enhanced resolution in optical lenses, which could potentially lead to the development of a flat superlens with the power to see inside a human cell and diagnose disease in a baby still in the womb.

The challenge that Soukoulis and other scientists face who work with metamaterials is to fabricate them so that they refract light negatively at ever smaller wavelengths, with the ultimate goal of making a metamaterial that refracts light at visible wavelengths and achieving the much-sought-after superlens. Admittedly, that goal is a
ways off. To date, existing metamaterials operate in the microwave or far infrared regions of the electromagnetic spectrum. The near infrared region of the spectrum still lies between the microwave and visible regions, and the wavelengths become ever shorter moving along the electromagnetic spectrum to visible light. Correspondingly, to negatively refract light at these shorter wavelengths requires fabricating metamaterials at extremely small length scales – a tricky feat.

However, recent research by Soukoulis and his co-workers from the University of Karlsruhe, Germany, published in the May 12, 2006, issue of Science demonstrates they have done just that. “We have fabricated for the first time a metamaterial that has a negative index of refraction at 1.5 micrometers,” said Soukoulis. “This is the smallest wavelength obtained so far.” Small, indeed; these wavelengths are microscopic and can be used in telecommunications. Soukoulis’ success moves metamaterials into the near infrared region of the electromagnetic spectrum – very close to visible light, superior resolution and a wealth of potential applications!
In addition, Soukoulis and his University of Karlsruhe colleagues have also shown that both the velocity of the individual wavelengths, called phase velocity, and the velocity of the wave packets, called group velocity, are both negative, which Soukoulis said accounts for the ability of negatively refracted light to seemingly defy Einstein’s theory of relativity and move backwards faster than the speed of light.

Elaborating, Soukoulis said, “When we have a metamaterial with a negative index of refraction at 1.5 micrometers that can disperse, or separate a wave into spectral components with different wavelengths, we can tune our lasers to play a lot of games with light. We can have a wavepacket hit a slab of negative index material, appear on the right-hand side of the material and begin to flow backward before the original pulse enters the negative index medium.”

Continuing, he explained that the pulse flowing backward also releases a forward pulse out the end of the medium, a situation that causes the pulse entering the front of the material appear to move out the back almost instantly.

“In this way, one can argue that that the wave packet travels with velocities much higher than the velocities of light,” said Soukoulis. “This is due to the dispersion of the negative index of refraction; there is nothing wrong with Einstein’s theory of relativity.”

The Basic Energy Sciences Office of the DOE’s Office of Science funds Ames Laboratory’s research on metamaterials. Ames Laboratory is operated for the Department of Energy by Iowa State University. The Lab conducts research into various areas of national concern, including energy resources, high-speed computer design, environmental cleanup and restoration, and the synthesis and study of new materials.


Story Source:

The above story is based on materials provided by Ames Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Ames Laboratory. "Reversing And Accelerating The Speed Of Light." ScienceDaily. ScienceDaily, 21 July 2006. <www.sciencedaily.com/releases/2006/07/060721152533.htm>.
Ames Laboratory. (2006, July 21). Reversing And Accelerating The Speed Of Light. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2006/07/060721152533.htm
Ames Laboratory. "Reversing And Accelerating The Speed Of Light." ScienceDaily. www.sciencedaily.com/releases/2006/07/060721152533.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins