Featured Research

from universities, journals, and other organizations

Astronomers Use Supercomputers To Study Atoms Linked To Black Holes

Date:
August 24, 2006
Source:
Ohio State University
Summary:
Super-hot atoms in space hold the key to an astronomical mystery, and an Ohio State University astronomer is leading an effort to study those atoms here on Earth. The team used supercomputers to perform the most precise energy calculations ever made for these atoms and their properties. As a result, astronomers -- in particular, those hunting black holes -- will have a better idea of what they are looking at when they examine faraway space matter using X-ray telescopes.

Super-hot atoms in space hold the key to an astronomical mystery, and an Ohio State University astronomer is leading an effort to study those atoms here on Earth.

Anil Pradhan, professor of astronomy, and his team have used supercomputers to perform the most precise energy calculations ever made for these atoms and their properties. As a result, astronomers -- in particular, those hunting black holes -- will have a better idea of what they are looking at when they examine faraway space matter using X-ray telescopes.

The results appear in the September issue of the Journal of Physics B: Atomic, Molecular and Optical Physics. And while the paper's subject matter is highly technical, it tells a story that weaves together atomic physics, Einstein's theory of relativity, cutting-edge astronomical observations, and some of the world's fastest supercomputers.

Astronomers have spied seas of super-hot atoms in plasma form, circling the centers of very bright galaxies, called active galactic nuclei. The plasma is thought to be a telltale sign of a black hole; the black hole itself is invisible, but any material spiraling into it should be very hot, and shine brightly with X-rays.

Before anyone can prove definitively whether active galaxies contain black holes, astronomers need to measure the energy levels of the excited atoms in the plasma very precisely, and match the measurements with what they know about atomic physics.

Assuring the accuracy of atomic data doesn't sound like the most exciting job in astronomy, Pradhan admitted -- but it is fundamentally important.

"Most astronomers take it for granted that the atomic data they are referencing are correct -- they have to, in order to interpret their observations," he said.

For 30 years, the professor of astronomy has worked on the problem. The new, high-resolution X-ray data gathered by NASA's Chandra X-ray Observatory and the European Space Agency's X-ray Multi-mirror Mission-Newton satellite spurred him on. Believing that such high-quality observations demanded good atomic data, he and his team -- which is also led by Ohio State senior research scientist Sultana Nahar -- decided to make the most precise atomic calculations possible.

After years of writing computer codes and thousands of hours of computing time at the Ohio Supercomputer Center, they calculated the energy levels of high-temperature atoms ranging from carbon to iron -- the atoms found in these plasmas.

Some of the previously accepted values for these atoms had acknowledged error rates from 30 percent to as high as factors of two or three. With the new calculations reported in this study, the error for all the atoms has been reduced to a few percent.

This means that from now on, when astronomers record X-ray images of objects in space, they will have a much better idea of what atoms make up the material they are looking at, and the physical conditions inside that object.

The atom that most black-hole hunters are interested in is iron, and that's where Einstein's general theory of relativity comes in.

The immense gravity of a black hole should, according to relativity, distort the X-ray signal as seen from Earth, particularly for iron atoms. The signal is a spectrum, and looks like a series of lines, with each atom having its own line. One line in particular, called the iron K-alpha line, appears broadened for X-rays emanating from the center of active galaxies, and it is often cited as a key indication of a black hole.

Thirteen years ago, Pradhan, Nahar, and their colleagues began a study called the Iron Project. Their goal, in part, is to find out why the iron K-alpha line is broadened and what the implications are for X-ray astronomy.

"The most direct observation of a black hole is considered to be the iron K-alpha line," Pradhan said. "So it's very important to find out whether it's been broadened because there is a black hole nearby, or if there is some other cause."

He is hopeful that astronomers will apply his new data to studies of the iron K-alpha line and help solve the mystery.

Coauthors on the paper include Claude J. Zeippen and former Ohio State graduate student Franck Delahaye, both of the Observatoire de Paris.

This work was supported by NASA, the National Science Foundation, and the Ohio Supercomputer Center .


Story Source:

The above story is based on materials provided by Ohio State University. Note: Materials may be edited for content and length.


Cite This Page:

Ohio State University. "Astronomers Use Supercomputers To Study Atoms Linked To Black Holes." ScienceDaily. ScienceDaily, 24 August 2006. <www.sciencedaily.com/releases/2006/08/060823184744.htm>.
Ohio State University. (2006, August 24). Astronomers Use Supercomputers To Study Atoms Linked To Black Holes. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2006/08/060823184744.htm
Ohio State University. "Astronomers Use Supercomputers To Study Atoms Linked To Black Holes." ScienceDaily. www.sciencedaily.com/releases/2006/08/060823184744.htm (accessed September 1, 2014).

Share This




More Space & Time News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Shuttle Discovery's Legacy, 30 Years Later

Space Shuttle Discovery's Legacy, 30 Years Later

Newsy (Aug. 30, 2014) The space shuttle Discovery launched for the very first time 30 years ago. Here's a look back at its legacy. Video provided by Newsy
Powered by NewsLook.com
Experiment Tests Whether Universe Is Actually A Hologram

Experiment Tests Whether Universe Is Actually A Hologram

Newsy (Aug. 27, 2014) Researchers at Fermilab are using a device called "The Holometer" to test whether our universe is actually a 2-D hologram that just seems 3-D. Video provided by Newsy
Powered by NewsLook.com
SpaceX’s Falcon 9 Rocket Explodes After Liftoff

SpaceX’s Falcon 9 Rocket Explodes After Liftoff

Newsy (Aug. 23, 2014) The private spaceflight company says it is preparing a thorough investigation into Friday's mishap. Video provided by Newsy
Powered by NewsLook.com
Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Newsy (Aug. 21, 2014) Russian cosmonauts say they've found evidence of sea plankton on the International Space Station's windows. NASA is a little more skeptical. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins