Featured Research

from universities, journals, and other organizations

Electronic Life Extension: New Electrode For Lithium Rechargeable Batteries

Date:
August 31, 2006
Source:
John Wiley & Sons, Inc.
Summary:
Peter Bruce of the University of St. Andrews and team have devised a new and efficient way to improve battery power as well as make charge last longer by using lithium oxide intercalation materials. They describe their results in the latest issue of Advanced Materials.

Everyone knows the frustration of battery discharge: that sinking feeling when your notebook computer shuts down before you've saved that vital document or the artistic annoyance when your digital camera cannot snap that last holiday sunset. Worse still, what about those times when you're stuck on a five-hour flight with only a minute's worth of charge in your mp3 player?

A solid solution to the problem could come from chemists in the UK. They have devised a new and efficient way to improve battery power as well as make that precious charge last longer. They describe their results in the latest issue of Advanced Materials.

Modern rechargeable batteries for electronic gadgets generally use lithium compounds as the positive electrode and have revolutionized the electronics industry. They can be made very compact but can still deliver the required voltage to run everything from cell phones to digital cameras and notebook computers. And, not forgetting those ubiquitous mp3 players.

As gadgetry becomes sophisticated so consumer demands on battery life have risen. Moreover, more powerful lithium batteries are beginning to be used in power tools and may soon be seen in electric vehicles, applications that are much more draining than those for which conventional lithium batteries are used.

Now, Kuthanapillil Shaju and Peter Bruce of the University of St Andrews, Scotland, explain how lithium batteries use so-called intercalation materials as their anode. These materials are composed of a solid network of lithium atoms together with other metals, such as cobalt, nickel, or manganese, meshed together with oxygen atoms. When you charge a lithium battery, the charging current pulls the positive lithium ions out of this network. Then, when you use the battery, it discharges as these lithium ions migrate back into the electrode, pulling electrons as they go, and so generating a current.

The challenge is to make new electrode materials that deliver high power (fast discharge) and high energy storage. Shaju and Bruce hoped they could solve these problems by developing a new way of synthesizing a particular lithium intercalation compound (Li(Co1/3 Ni1/3 Mn1/3)O2). As a bonus, they hoped to be able to simplify the complicated manufacturing process.

The St Andrews team devised a new synthetic approach to the compound that involves simply mixing the necessary precursor compounds - organic salts of the individual metals - with a solvent in a single step. This is in sharp contrast to the conventional multi-step process used for making the compound. Using this technique, they were able to make highly uniform lithium oxide intercalation materials in which nickel, cobalt, and manganese ions are embedded at regular intervals in the solid, which also contains pores for the electrolyte.

The highly porous nature of the new material is crucial to its electrical properties. The pores allow the electrolyte to make intimate contact with the electrode surface resulting in high rates of discharge and high energy storage. The St Andrews team has tested their new lithium electrode material by incorporating it into a prototype battery and found that it gives the battery far superior power and charge retention. Increasing the rate by 1000%, so that the battery can be discharged in just six minutes, reduces the discharge capacity by only 12%. The test results suggest that this approach to rechargeable batteries could be used to make even higher power batteries for vehicles and power tools. Most importantly though, the new lithium materials could mean an end to mp3 player power loss on that long-haul flight. (Assuming you remembered to charge it up in the first place.)

There's an added bonus in that replacing a proportion of the cobalt used in the traditional lithium-cobalt-oxide electrodes with manganese improves safety by reducing the risk of overheating.


Story Source:

The above story is based on materials provided by John Wiley & Sons, Inc.. Note: Materials may be edited for content and length.


Cite This Page:

John Wiley & Sons, Inc.. "Electronic Life Extension: New Electrode For Lithium Rechargeable Batteries." ScienceDaily. ScienceDaily, 31 August 2006. <www.sciencedaily.com/releases/2006/08/060830215845.htm>.
John Wiley & Sons, Inc.. (2006, August 31). Electronic Life Extension: New Electrode For Lithium Rechargeable Batteries. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2006/08/060830215845.htm
John Wiley & Sons, Inc.. "Electronic Life Extension: New Electrode For Lithium Rechargeable Batteries." ScienceDaily. www.sciencedaily.com/releases/2006/08/060830215845.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins