Featured Research

from universities, journals, and other organizations

Radiotracers For Imaging Studies In Addiction: How Chemistry Enhances Ability To See Inside The Brain

Date:
September 29, 2006
Source:
Brookhaven National Laboratory
Summary:
Chemist Joanna Fowler, Director of the Center for Translational Neuroimaging at the U.S. Department of Energy's Brookhaven National Laboratory and a pioneer in the development of radioactively "tagged" molecules used with positron emission tomography (PET), will give a talk on radiotracers at the 232nd national meeting of the American Chemical Society.

Chemist Joanna Fowler, Director of the Center for Translational Neuroimaging at the U.S. Department of Energy's Brookhaven National Laboratory.
Credit: Image courtesy of Brookhaven National Laboratory

Molecular imaging using positron emission tomography (PET) continues to provide new knowledge about how brain circuits are altered by addictive drugs. Chemist Joanna Fowler, Director of the Center for Translational Neuroimaging at the U.S. Department of Energy’s Brookhaven National Laboratory and a pioneer in the development of radioactively “tagged” molecules used with PET, will give a talk on these radiotracers at the 232nd national meeting of the American Chemical Society in San Francisco, California, at 8:25 a.m. Pacific Time on Thursday, September 14, 2006, in Room 270 of the Moscone Convention Center.

Related Articles


“Addiction is a brain disease that is devastating for families and society,” said Fowler. “Chemistry — through the development of radiotracers that can monitor the distribution and kinetics of drugs and receptors in the brain — is at the core of understanding the addictive process and finding new ways to help people overcome it.”

In PET studies, radiotracers (compounds labeled with a radioactive form of certain chemical elements such as carbon or fluorine) are injected into a research subject’s bloodstream. A PET scanner picks up the radioactive signal from the tracer and continuously tracks its concentration and movement through the body. The data can be used to reconstruct three-dimensional images that reveal where the compound goes in the body/brain and how long it stays, for example.

The Brookhaven group, led by Fowler, has developed radiotracers to track the movement of various addictive drugs including cocaine, nicotine, and methamphetamine, and also to measure the levels of certain “chemical messengers,” or neurotransmitters, and their receptors in the brain. PET studies using these radiotracers have revealed, for example, that all addictive drugs elevate levels of a neurotransmitter called dopamine, a chemical that helps us experience feelings of pleasure, reward, and motivation — and also plays a role in physical movement. Through the process of addiction, these studies show, the brain’s ability to respond to pleasure signals becomes depleted as receptors for dopamine are lost. The research has also indicated that initial differences in people’s dopamine systems may help explain why some people find drugs pleasurable and become addicted while others do not.

One of the challenges for the researchers has been developing extremely rapid methods for synthesizing the radiotracer compounds. The radioactive elements (isotopes) most commonly used, carbon-11 (11C) and fluorine-18 (18F), have very short half-lives (20 and 110 minutes, respectively). The half-life is the time it takes for half of the radioactive atoms in the sample to decay to a non-radioactive form. Since the PET scanner depends on the radioactive signal to detect the substance in the body, the compounds must be made and injected quickly to generate useful data.

“We are currently developing new ways to label complex molecules with carbon-11 and fluorine-18 to gain a better understanding of how different drugs of abuse disrupt brain function and how we may be able to treat addiction,” said Fowler. “This is an area that benefits enormously from creative synthetic chemistry. It is also an area that desperately needs new talent to develop the scientific tools needed to solve this major public health problem.”

Fowler is no stranger to radiotracer chemistry. In 1976, she and her colleagues synthesized 18F-fluorodeoxyglucose (FDG), the first radiotracer to measure brain glucose metabolism. As a stand-in for glucose, the body’s main chemical fuel, FDG can help scientists monitor metabolic activity throughout the body and brain. Today, FDG is widely used in PET centers around the world to study and diagnose neurological and psychiatric diseases and to diagnose lung and colon cancer.

Fowler also developed another radiotracer that first showed that cocaine’s distribution in the human brain parallels its effects on behavior, and a series of radiotracers to map monoamine oxidase (MAO), a brain enzyme that regulates the levels of other neurotransmitters. Using these radiotracers, she discovered that smokers have reduced levels of MAO in their brains, a finding that may account for some of the behavioral and epidemiological features of smoking, such as the high rate of smoking in individuals with depression and drug addiction.

Fowler earned her Ph.D. in chemistry from the University of Colorado and did her postdoctoral work at the University of East Anglia in England and at Brookhaven. She joined the staff of Brookhaven in 1971. A member of the National Academy of Sciences, Fowler has won numerous other honors including the American Chemical Society’s 2002 Glen T. Seaborg Award for Nuclear and Radiochemistry, the 2000 Society of Nuclear Imaging in Drug Development’s Alfred P. Wolf Award; the U.S. Department of Energy’s 1999 E. O. Lawrence Award, and the 1998 Francis P. Garvan-John M. Olin Medal. She has been published in more than 300 peer-reviewed articles in leading scientific journals and holds eight patents for radiolabeling procedures.

This research is supported by the Office of Biological and Environmental Research with the U.S. Department of Energy’s Office of Science and by the National Institutes of Health. Imaging techniques such as PET are a direct outgrowth of DOE’s long-standing investment in basic physics and chemistry research. Through work on accelerators designed to answer questions about the fundamental nature of matter and energy, pioneering DOE scientists understood and realized the potential to develop such tools for the diagnosis and treatment of disease. The ongoing research using these tools to investigate drug addiction and other diseases is a prime example of how our national laboratories bring together the expertise of chemists, physicists, and medical professionals to address questions of profound significance for society.


Story Source:

The above story is based on materials provided by Brookhaven National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Brookhaven National Laboratory. "Radiotracers For Imaging Studies In Addiction: How Chemistry Enhances Ability To See Inside The Brain." ScienceDaily. ScienceDaily, 29 September 2006. <www.sciencedaily.com/releases/2006/09/060915203117.htm>.
Brookhaven National Laboratory. (2006, September 29). Radiotracers For Imaging Studies In Addiction: How Chemistry Enhances Ability To See Inside The Brain. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2006/09/060915203117.htm
Brookhaven National Laboratory. "Radiotracers For Imaging Studies In Addiction: How Chemistry Enhances Ability To See Inside The Brain." ScienceDaily. www.sciencedaily.com/releases/2006/09/060915203117.htm (accessed October 24, 2014).

Share This



More Mind & Brain News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Academic Scandal Shocks UNC

Academic Scandal Shocks UNC

AP (Oct. 23, 2014) A scandal involving bogus classes and inflated grades at the University of North Carolina was bigger than previously reported, a new investigation found. (Oct. 23) Video provided by AP
Powered by NewsLook.com
Working Mother Getaway: Beaches Turks & Caicos

Working Mother Getaway: Beaches Turks & Caicos

Working Mother (Oct. 22, 2014) Feast your eyes on this gorgeous family-friendly resort. Video provided by Working Mother
Powered by NewsLook.com
What Your Favorite Color Says About You

What Your Favorite Color Says About You

Buzz60 (Oct. 22, 2014) We all have one color we love to wear, and believe it or not, your color preference may reveal some of your character traits. In celebration of National Color Day, Krystin Goodwin (@kyrstingoodwin) highlights what your favorite colors may say about you. Video provided by Buzz60
Powered by NewsLook.com
First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins