Featured Research

from universities, journals, and other organizations

New Asthma Medicine Targets Vulnerable Inner-city Children

Date:
October 23, 2006
Source:
UT Southwestern Medical Center
Summary:
UT Southwestern Medical Center is one of a handful of top research institutions evaluating a promising new medication researchers hope can reduce the severity and frequency of asthma attacks in inner-city children, a population known to have a high prevalence of severe asthma.

UT Southwestern Medical Center is one of a handful of top research institutions evaluating a promising new medication researchers hope can reduce the severity and frequency of asthma attacks in inner-city children, a population known to have a high prevalence of severe asthma.

"Children living in inner cities are exposed to higher allergen levels and tend to have more severe asthma than children living elsewhere," said Dr. Rebecca Gruchalla, chief of allergy at UT Southwestern. "We want to see whether this new treatment can help children with allergic asthma, for which the environmental factors are more difficult to control."

Indoor allergens commonly found in inner cities, such as dust mites, cockroaches, molds and animal dander, are significant allergens that may contribute to the severity of a child's asthma. UT Southwestern, along with 10 other sites around the country, is participating in a National Institutes of Health-supported evaluation of anti-IgE therapy for children. This therapy is already being used successfully in adults and adolescents who have asthma.

"IgE antibodies are the fuel in the immune system that perpetuates the asthmatic reaction," said Dr. Gruchalla, serves as principal investigator at the Dallas site. Some people are more genetically prone to develop IgE antibodies, which are molecules produced by white blood cells in response to exposure to allergens. IgE antibodies can make asthma worse in those people who are sensitive to particular allergens.

The Inner City Anti-IgE Therapy for Asthma (ICATA) study involves about 50 children at each site. It will evaluate Xolair (omalizumab), a drug that binds to and inactivates IgE antibodies.

"Xolair 'sops up' the IgE that's there, decreases the receptors for IgE, and regulates many things that pertain to allergy and the asthmatic response," Dr. Gruchalla said.

The two-year Dallas portion of the study targets children 6 to 20 years old who reside within the Dallas Independent School District. Individuals interested in participating should call 214-648-5436 for additional requirements and information.

Participating children will receive an injection every two or four weeks and medical care for their asthma for nearly two years. Laboratory analyses of biological and environmental samples from the home also will occur during the same time period.

The $15 million study is funded through the Inner-City Asthma Consortium (ICAC), an NIH-sponsored, $55.8 million, six-year contract to investigate treatments and causes of asthma in urban children. Novartis Pharmaceuticals Corp. and Genentech, which are providing about $8 million toward the study, are also donating an additional $6 million in medication. The balance of funding will be provided by the National Institute of Allergy and Infectious Diseases.

The consortium is administered by the University of Wisconsin-Madison. Other research sites in addition to UT Southwestern are: the University of Arizona, Boston University, Children's Memorial Hospital in Chicago, Rainbow Babies and Children's Hospital in Cleveland, Children's National Medical Center in Washington, D.C., National Jewish Medical and Research Center in Denver, Johns Hopkins University, Mount Sinai School of Medicine, and St. Louis Children's Hospital.

Dr. Gruchalla has led the Dallas arm of the Inner City Asthma Consortium for four years. She is also principal investigator of an asthma screening project in Dallas schools and project director for Community Leadership in Preventing Asthma, a study evaluating links between asthma-associated morbidity and allergen levels in schools and homes.

Other UT Southwestern investigators in the ICATA study are Dr. William Neaville, clinical assistant professor of pediatrics and internal medicine, and Dr. Vanthaya Gan, clinical professor of pediatrics.


Story Source:

The above story is based on materials provided by UT Southwestern Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

UT Southwestern Medical Center. "New Asthma Medicine Targets Vulnerable Inner-city Children." ScienceDaily. ScienceDaily, 23 October 2006. <www.sciencedaily.com/releases/2006/10/061019093700.htm>.
UT Southwestern Medical Center. (2006, October 23). New Asthma Medicine Targets Vulnerable Inner-city Children. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2006/10/061019093700.htm
UT Southwestern Medical Center. "New Asthma Medicine Targets Vulnerable Inner-city Children." ScienceDaily. www.sciencedaily.com/releases/2006/10/061019093700.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins