Featured Research

from universities, journals, and other organizations

Stretching Bone Marrow Stem Cells Pushes Them Towards Becoming Blood Vessel

Date:
November 6, 2006
Source:
University of California - Berkeley
Summary:
When stretched, a type of adult stem cell taken from bone marrow can be nudged towards becoming the type of tissue found in blood vessels, according to a new study by UC Berkeley bioengineers. The findings highlight the importance of mechanical forces in stem cell differentiation.

Mesenchymal stem cells can be grown on silicone membranes with micropatterned grooves. These grooves can align the cells with the direction of stretch in a specialized "stretch chamber."
Credit: Image courtesy of Kyle Kurpinski, UC Berkeley

When stretched, a type of adult stem cell taken from bone marrow can be nudged towards becoming the type of tissue found in blood vessels, according to a new study by bioengineers at the University of California, Berkeley.

Researchers placed mesenchymal stem cells onto a silicone membrane that was stretched longitudinally once every second. It was a cellular workout routine that helped point the bone marrow stem cell in the direction of becoming the smooth muscle tissue of vascular walls.

The findings, published today (Monday, Oct. 23) in the online early edition of the Proceedings of the National Academy of Sciences, highlight the importance of mechanical forces in stem cell differentiation.

Mesenchymal stem cells have the ability to turn into different types of connective tissue including bone, cartilage and muscle. Embryonic stem cells have the advantage of being able to turn into any kind of body tissue and of being easier to work with in the lab, though that flexibility comes with controversy and ethical questions not found in research on adult stem cells.

But research on both types of stem cells holds the promise of treatment for diseased or damaged body parts. Experiments in stem cell differentiation, however, have traditionally relied upon chemical signals to prompt this transformation into the desired cell type.

Song Li, UC Berkeley associate professor of bioengineering and principal investigator of the study, heads one of the leading research groups in the country investigating the role of a stem cell's physical environment on its development.

"The mechanical effects on the body are well known. A good example is when astronauts in space experience a loss of bone mass because there is no gravity," said Li. "We are now extending this concept to the cellular level by showing that mechanical stimulation can impact stem cell differentiation."

In an effort to better understand the factors that affect the eventual fate of mesenchymal stem cells, the researchers designed the experiment to simulate the physical forces a cell would encounter if it were to become a blood vessel.

Kyle Kurpinski, a UC Berkeley graduate student in bioengineering and lead author of the study, noted that in previous studies on the effects of mechanical strain, cells were stretched in all directions. However, he pointed out that cells in the walls of a blood vessel are pulled in a circumferential direction, or sideways if the vessel walls are laid flat. This new study is the first to look at the effects of such uniaxial strain on stem cell differentiation.

A one-stretch-a-second pace was chosen to correspond to a typical adult pulse rate, said Kurpinski. The researchers placed a single layer of mesenchymal stem cells onto a membrane with microgrooves to resemble the patterns formed in blood vessels by collagen fibers.

The microgrooves were aligned either perpendicular or parallel to the axis of strain, and some of the cells were stretched while others were not. The researchers also looked at the effects of stretching stem cells on a smooth membrane with no microgrooves.

"It is hypothesized that cells aligned in the microgrooves actually feel the strain of the pull more than if they were on a smooth surface," said Kurpinski.

After two days of this cellular exercise regimen, the researchers found a significant increase in the expression of a group of genes that control tensile strength compared with cells that were not stretched. Tensile strength is important for tissue that must withstand pulling forces, such as in vascular walls. Specifically, there was an increased level of calponin 1, a genetic marker for smooth muscles.

At the same time, expression of a group of genes associated with compression-bearing tissue, such as cartilage and bone, decreased. "For cartilage and bone, particularly at the joints, cells experience compression forces," said Li. "Stem cells seem to know the type of tissue they are supposed to become by the type of mechanical strain they are subjected to."

As for cell positioning, the researchers found that without the microgrooves, the stem cells would align themselves perpendicularly to the direction of the stretch. In contrast, when stretched on a membrane with microgrooves parallel to the axis of strain, the stem cells aligned themselves along the grooves.

They found that the perpendicular orientation significantly diminished the expression of genes for tensile strength. Researchers also saw a slight increase in cell proliferation when cells were aligned parallel to the axis of strain.

The findings indicate that the stem cells were well on their way to becoming smooth muscle tissue, although they didn't quite get there.

"The potential is there," said Li. "We are halfway done. To completely achieve the efficient guidance of cell differentiation in a lab, we will likely need a combination of chemical and mechanical factors."

"We're definitely a major step closer to developing a process of tissue engineering that could one day have clinical applications," added Kurpinski.

Other co-authors of the study are Julia Chu, a research associate in Li's lab, and Craig Hashi, a UC Berkeley graduate student in bioengineering.

The National Institutes of Health helped support this study.


Story Source:

The above story is based on materials provided by University of California - Berkeley. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Berkeley. "Stretching Bone Marrow Stem Cells Pushes Them Towards Becoming Blood Vessel." ScienceDaily. ScienceDaily, 6 November 2006. <www.sciencedaily.com/releases/2006/10/061023192600.htm>.
University of California - Berkeley. (2006, November 6). Stretching Bone Marrow Stem Cells Pushes Them Towards Becoming Blood Vessel. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2006/10/061023192600.htm
University of California - Berkeley. "Stretching Bone Marrow Stem Cells Pushes Them Towards Becoming Blood Vessel." ScienceDaily. www.sciencedaily.com/releases/2006/10/061023192600.htm (accessed April 24, 2014).

Share This



More Health & Medicine News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Pharma Braces for M&A Wave

Big Pharma Braces for M&A Wave

Reuters - Business Video Online (Apr. 22, 2014) Big pharma on the move as Novartis boss, Joe Jimenez, tells Reuters about plans to transform his company via an asset exchange with GSK, and Astra Zeneca shares surge on speculation that Pfizer is looking for a takeover. Joanna Partridge reports. Video provided by Reuters
Powered by NewsLook.com
Study Says Most Crime Not Linked To Mental Illness

Study Says Most Crime Not Linked To Mental Illness

Newsy (Apr. 22, 2014) A new study finds most crimes committed by people with mental illness are not caused by symptoms of their illness or disorder. Video provided by Newsy
Powered by NewsLook.com
Hagel Gets Preview of New High-Tech Projects

Hagel Gets Preview of New High-Tech Projects

AP (Apr. 22, 2014) Defense Secretary Chuck Hagel is given hands-on demonstrations Tuesday of some of the newest research from DARPA _ the military's Defense Advanced Research Projects Agency program. (April 22) Video provided by AP
Powered by NewsLook.com
How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins