Featured Research

from universities, journals, and other organizations

A Walk Along An Interface Yields Its Mobility

Date:
November 6, 2006
Source:
Northeastern University
Summary:
In the Oct. 27 issue of Science, researchers at Colorado School of Mines and Northeastern University report a novel computational methodology aimed at quantifying the kinetics of interfaces in diverse material systems. The paper, titled "Interface Mobility from Interface Random Walk," addresses computational issues in extracting interface kinetic parameters under experimentally relevant conditions.

In the Oct. 27 issue of Science, researchers at Colorado School of Mines and Northeastern University report a novel computational methodology aimed at quantifying the kinetics of interfaces in diverse material systems. The paper, titled "Interface Mobility from Interface Random Walk", addresses computational issues in extracting interface kinetic parameters under experimentally relevant conditions.

Interfaces are an important class of defects whose distribution affects the properties of the otherwise pristine material, both in nature and in technology. This is especially the case in polycrystals, thin films, multiphase materials, and composites, where the mechanical, chemical, and transport properties are sensitive to the underlying interfacial microstructure.

"In fact, tailoring this microstructure is an emerging paradigm for engineering high performance, multifunctional materials," said Zachary Trautt, a graduate student at Colorado School of Mines and the first author in the study.

The interfacial microstructure is subject to several driving forces during material synthesis and function. More often than not, these driving forces are large enough to cause the interfaces to move and the microstructure (or its precursor) evolves. Naturally, controlling the final microstructure requires accurate models that relate the interface motion to the driving forces in effect.

A quantitative measure of interface kinetics is the interface mobility, the ratio of the interface velocity to the driving force. Past studies on individual homophase crystalline interfaces (or grain boundaries) in several high-purity metals show an interesting trend; the experimental mobilities are orders of magnitude smaller than those extracted via computations. The discrepancy is often attributed to the presence of impurities, fueling speculation that even minute quantities of impurities significantly retard interface motion.

"An often overlooked fact is that computations are limited to tens of nanoseconds," saidMoneesh Upmanyu, co-author and the lead researcher in the study. "As a result, they are performed at driving forces orders of magnitude greater than those commonly observed in experiments," he explained. "This further weakens the comparison, and there is a need to extend the computational studies to more realistic driving forces, and include the effect of impurities."

"Our computational methodology offers a way to address both these challenges, efficiently and with setups that are relatively simple," said Trautt.

The basis for the methodology is the pioneering theoretical work by Einstein, Smulochowski and Langevin on Brownian motion in the early 1900s.

"Just as their study related the dance of macroscopic particles to their diffusivity, the microscopic thermal fluctuations result in interface forces that conspire towards a one-dimensional dance of the average interface position, which in turn yields its mobility in the zero driving force limit," said Alain Karma, also a co-author in the study.

"The technique is remarkably efficient," noted Upmanyu. "The computations on pure aluminum yielded mobilities within a nanosecond, a significant savings in computational resources."

Comparisons with previous experiments and computations reveal that the retarding effect of impurities is much more severe than previously thought. The authors are now working on extending the theory and the computations to directly quantify the impurity drag effect.

Authors of the paper include Zachary Trautt, graduate student in Group for Simulation and Theory of Atomic-scale Material Phenomena (stAMP), Engineering Division, Colorado School of Mines; Moneesh Upmanyu, group leader of stAMP and Assistant Professor in the Engineering Division and Materials Science Program at Colorado School of Mines; Alain Karma, Distinguished Professor in the Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University.

The study was funded by Department of Energy (BES, Dale Koelling), Department of Defense (ONR, Julie Christodoulou), and Alcoa Technical Center (Hasso Weiland).


Story Source:

The above story is based on materials provided by Northeastern University. Note: Materials may be edited for content and length.


Cite This Page:

Northeastern University. "A Walk Along An Interface Yields Its Mobility." ScienceDaily. ScienceDaily, 6 November 2006. <www.sciencedaily.com/releases/2006/11/061103083658.htm>.
Northeastern University. (2006, November 6). A Walk Along An Interface Yields Its Mobility. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2006/11/061103083658.htm
Northeastern University. "A Walk Along An Interface Yields Its Mobility." ScienceDaily. www.sciencedaily.com/releases/2006/11/061103083658.htm (accessed August 29, 2014).

Share This




More Matter & Energy News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins