Featured Research

from universities, journals, and other organizations

A Walk Along An Interface Yields Its Mobility

Date:
November 6, 2006
Source:
Northeastern University
Summary:
In the Oct. 27 issue of Science, researchers at Colorado School of Mines and Northeastern University report a novel computational methodology aimed at quantifying the kinetics of interfaces in diverse material systems. The paper, titled "Interface Mobility from Interface Random Walk," addresses computational issues in extracting interface kinetic parameters under experimentally relevant conditions.

In the Oct. 27 issue of Science, researchers at Colorado School of Mines and Northeastern University report a novel computational methodology aimed at quantifying the kinetics of interfaces in diverse material systems. The paper, titled "Interface Mobility from Interface Random Walk", addresses computational issues in extracting interface kinetic parameters under experimentally relevant conditions.

Interfaces are an important class of defects whose distribution affects the properties of the otherwise pristine material, both in nature and in technology. This is especially the case in polycrystals, thin films, multiphase materials, and composites, where the mechanical, chemical, and transport properties are sensitive to the underlying interfacial microstructure.

"In fact, tailoring this microstructure is an emerging paradigm for engineering high performance, multifunctional materials," said Zachary Trautt, a graduate student at Colorado School of Mines and the first author in the study.

The interfacial microstructure is subject to several driving forces during material synthesis and function. More often than not, these driving forces are large enough to cause the interfaces to move and the microstructure (or its precursor) evolves. Naturally, controlling the final microstructure requires accurate models that relate the interface motion to the driving forces in effect.

A quantitative measure of interface kinetics is the interface mobility, the ratio of the interface velocity to the driving force. Past studies on individual homophase crystalline interfaces (or grain boundaries) in several high-purity metals show an interesting trend; the experimental mobilities are orders of magnitude smaller than those extracted via computations. The discrepancy is often attributed to the presence of impurities, fueling speculation that even minute quantities of impurities significantly retard interface motion.

"An often overlooked fact is that computations are limited to tens of nanoseconds," saidMoneesh Upmanyu, co-author and the lead researcher in the study. "As a result, they are performed at driving forces orders of magnitude greater than those commonly observed in experiments," he explained. "This further weakens the comparison, and there is a need to extend the computational studies to more realistic driving forces, and include the effect of impurities."

"Our computational methodology offers a way to address both these challenges, efficiently and with setups that are relatively simple," said Trautt.

The basis for the methodology is the pioneering theoretical work by Einstein, Smulochowski and Langevin on Brownian motion in the early 1900s.

"Just as their study related the dance of macroscopic particles to their diffusivity, the microscopic thermal fluctuations result in interface forces that conspire towards a one-dimensional dance of the average interface position, which in turn yields its mobility in the zero driving force limit," said Alain Karma, also a co-author in the study.

"The technique is remarkably efficient," noted Upmanyu. "The computations on pure aluminum yielded mobilities within a nanosecond, a significant savings in computational resources."

Comparisons with previous experiments and computations reveal that the retarding effect of impurities is much more severe than previously thought. The authors are now working on extending the theory and the computations to directly quantify the impurity drag effect.

Authors of the paper include Zachary Trautt, graduate student in Group for Simulation and Theory of Atomic-scale Material Phenomena (stAMP), Engineering Division, Colorado School of Mines; Moneesh Upmanyu, group leader of stAMP and Assistant Professor in the Engineering Division and Materials Science Program at Colorado School of Mines; Alain Karma, Distinguished Professor in the Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University.

The study was funded by Department of Energy (BES, Dale Koelling), Department of Defense (ONR, Julie Christodoulou), and Alcoa Technical Center (Hasso Weiland).


Story Source:

The above story is based on materials provided by Northeastern University. Note: Materials may be edited for content and length.


Cite This Page:

Northeastern University. "A Walk Along An Interface Yields Its Mobility." ScienceDaily. ScienceDaily, 6 November 2006. <www.sciencedaily.com/releases/2006/11/061103083658.htm>.
Northeastern University. (2006, November 6). A Walk Along An Interface Yields Its Mobility. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2006/11/061103083658.htm
Northeastern University. "A Walk Along An Interface Yields Its Mobility." ScienceDaily. www.sciencedaily.com/releases/2006/11/061103083658.htm (accessed September 17, 2014).

Share This



More Matter & Energy News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins