Featured Research

from universities, journals, and other organizations

How Plastic Solar Cells Turn Sunlight Into Electricity

Date:
December 13, 2006
Source:
Penn State
Summary:
A new analytical technique, featured on the cover of this week's issue of the Journal of Physical Chemistry B, could lead to the development of cheaper, more efficient solar cells. The information that this technique provides is a critical step in the development of a new class of solar cells, which promise significant savings in production costs compared to conventional silicon-based cells.

A plot of the wavelength of emitted infrared light vs. the time delay of the light emission provides information about the path of an electron within a plastic solar cell. This information about how the cell makes an electric current from light will lead to improvements in the efficiency and usable lifetime of solar cells.
Credit: Image courtesy of Penn State

A new analytical technique that uses infrared spectroscopy to study light-sensitive organic materials could lead to the development of cheaper, more efficient solar cells. Using infrared (IR) spectroscopy to study the vibrations of atoms within the material, the technique provides information about the movement of electrons within a film of carbon-based materials.

Related Articles


Obtaining this information is a critical step in the development of a new class of solar cells, which promise significant savings in production costs compared to conventional silicon-based cells. The new analytical technique, published as the cover story in this week's issue of the Journal of Physical Chemistry B, was developed by a team led by Penn State University researcher John B. Asbury, assistant professor of chemistry.

Organic photovoltaic devices (OPV) have become important because they are much less expensive to produce than silicon-based solar cells. The material consists of a film made of two different types of chemicals: a polymer that releases an electron when it is struck by a photon of light and a large molecule that accepts the freed electrons, which is based on the soccer-ball-shaped "buckminsterfullerene" carbon molecules popularly known as "buckyballs."

Because the electrical interactions needed to produce an electric current occur at the interfaces of the two components of this polymer blend, materials scientists need to understand the arrangement of molecules in the film. Asbury's new analytical technique provides a closer look at this arrangement than the techniques that traditionally have been used. Previous studies, using atomic-force microscopy, supply general information about the packing of the molecules, but they provide very limited information about the interfaces where the molecules actually come together. IR spectroscopy, on the other hand, provides a more detailed picture of the interface by tracing the exchange of electrons between two molecules of the film.

"The problems with OPVs today are that they are not efficient enough and they tend to stop working over time," says Asbury. In order to develop a useful electric current, the flow between the two components must be optimized. "To improve performance, we need to understand what happens at the molecular level when light is converted to electrons," Asbury explains.

When the film is exposed to light, each photon excites an electron in the polymer. If an interface between the polymer molecule and the functionalized buckminsterfullerene exists, a current can be produced. However, in the materials developed to date, many of the electrons appear to become sidetracked. Asbury exposes the film to light using ultrashort laser pulses, which causes photons of light to be converted to electrons across the entire surface at the same time. Two-dimensional IR spectroscopy is used to monitor the vibration of the molecules within the film. "The vibrations of the molecules are strongly affected by the presence or absence of electrons," says Asbury. "We use these vibrations as a probe to track the movement of electrons. By varying the structures of the materials, we expect to identify the side paths that reduce efficiency and ultimately to use that information to guide material design." The ultimate goal is a solar cell that is sufficiently inexpensive and efficient that it can be used on a rooftop to provide the electrical energy needed in a building.

In addition to Asbury, the Penn State research team includes graduate students Larry W. Barbour and Maureen Hegadorn. The work was funded by the Camille and Henry Dreyfus Foundation, the Petroleum Research Fund, and Penn State.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "How Plastic Solar Cells Turn Sunlight Into Electricity." ScienceDaily. ScienceDaily, 13 December 2006. <www.sciencedaily.com/releases/2006/12/061211221036.htm>.
Penn State. (2006, December 13). How Plastic Solar Cells Turn Sunlight Into Electricity. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2006/12/061211221036.htm
Penn State. "How Plastic Solar Cells Turn Sunlight Into Electricity." ScienceDaily. www.sciencedaily.com/releases/2006/12/061211221036.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com
British 'Bio-Bus' Is Powered By Human Waste

British 'Bio-Bus' Is Powered By Human Waste

Buzz60 (Nov. 21, 2014) British company GENeco debuted what its calling the Bio-Bus, a bus fueled entirely by biomethane gas produced from food scraps and sewage. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins