Featured Research

from universities, journals, and other organizations

In Tiny Supercooled Clouds, Physicists Exchange Light And Matter

Date:
February 8, 2007
Source:
Harvard University
Summary:
Physicists have for the first time stopped and extinguished a light pulse in one part of space and then revived it in a completely separate location. They accomplished this feat by completely converting the light pulse into matter that travels between the two locations and is subsequently changed back to light. Matter, unlike light, can easily be manipulated, and the experiments provide a powerful means to control optical information.

Lene Hau explains how she stops light in one place then retrieves and speeds it up in a completely separate place. (Staff photo Justin Ide/Harvard News Office)

Physicists have for the first time stopped and extinguished a light pulse in one part of space and then revived it in a completely separate location. They accomplished this feat by completely converting the light pulse into matter that travels between the two locations and is subsequently changed back to light.

Matter, unlike light, can easily be manipulated, and the experiments provide a powerful means to control optical information. The findings, published this week by Harvard University researchers in the journal Nature, could present an entirely new way for scientists and engineers to manipulate the light pulses used in fiber-optic communications, the technology at the heart of our highly networked society.

"We demonstrate that we can stop a light pulse in a supercooled sodium cloud, store the data contained within it, and totally extinguish it, only to reincarnate the pulse in another cloud two-tenths of a millimeter away," says Lene Vestergaard Hau, Mallinckrodt Professor of Physics and of Applied Physics in Harvard's Faculty of Arts and Sciences and School of Engineering and Applied Sciences.

Hau and her co-authors, Naomi S. Ginsberg and Sean R. Garner, found that the light pulse can be revived, and its information transferred between the two clouds of sodium atoms, by converting the original optical pulse into a traveling matter wave which is an exact matter copy of the original pulse, traveling at a leisurely 200 meters per hour. The matter pulse is readily converted back into light when it enters the second of the supercooled clouds -- known as Bose-Einstein condensates -- and is illuminated with a control laser.

"The Bose-Einstein condensates are very important to this work because within these clouds atoms become phase-locked, losing their individuality and independence," Hau says. "The lock-step nature of atoms in a Bose-Einstein condensate makes it possible for the information in the initial light pulse to be replicated exactly within the second cloud of sodium atoms, where the atoms collaborate to revive the light pulse."

Within a Bose-Einstein condensate -- a cloud of sodium atoms cooled to just billionths of a degree above absolute zero -- a light pulse is spatially compressed by a factor of 50 million. The light drives a controllable number of the condensate's roughly 1.8 million sodium atoms to enter into quantum superposition states with a lower-energy component that stays put and a higher-energy component that travels between the two Bose-Einstein condensates. The amplitude and phase of the light pulse stopped and extinguished in the first cloud are imprinted in this traveling component and transferred to the second cloud, where the recaptured information can recreate the original light pulse.

The period of time when the light pulse becomes matter, and the matter pulse is isolated in space between the condensate clouds, could offer scientists and engineers a tantalizing new window for controlling and manipulating optical information; researchers cannot now readily control optical information during its journey, except to amplify the signal to avoid fading. The new work by Hau and her colleagues marks the first successful manipulation of coherent optical information.

"This work could provide a missing link in the control of optical information," Hau says. "While the matter is traveling between the two Bose-Einstein condensates, we can trap it, potentially for minutes, and reshape it -- change it -- in whatever way we want. This novel form of quantum control could also have applications in the developing fields of quantum information processing and quantum cryptography."

Ginsberg, Garner, and Hau's work was supported by the Air Force Office of Sponsored Research, the National Science Foundation, and the National Aeronautics and Space Administration.


Story Source:

The above story is based on materials provided by Harvard University. Note: Materials may be edited for content and length.


Cite This Page:

Harvard University. "In Tiny Supercooled Clouds, Physicists Exchange Light And Matter." ScienceDaily. ScienceDaily, 8 February 2007. <www.sciencedaily.com/releases/2007/02/070207171935.htm>.
Harvard University. (2007, February 8). In Tiny Supercooled Clouds, Physicists Exchange Light And Matter. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2007/02/070207171935.htm
Harvard University. "In Tiny Supercooled Clouds, Physicists Exchange Light And Matter." ScienceDaily. www.sciencedaily.com/releases/2007/02/070207171935.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com
Industry's Optimism Shines At New York Auto Show

Industry's Optimism Shines At New York Auto Show

Newsy (Apr. 16, 2014) After seeing auto sales grow last month, there's plenty for the industry to celebrate as it rolls out its newest designs. Video provided by Newsy
Powered by NewsLook.com
Ford Mustang Fetes Its 50th Atop Empire State Building

Ford Mustang Fetes Its 50th Atop Empire State Building

AFP (Apr. 16, 2014) Ford celebrated the 50th birthday of its beloved Mustang by displaying a new model of the convertible on top of the Empire State Building in New York. Duration: 00:28 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins