Featured Research

from universities, journals, and other organizations

Biomedical Engineers Advance On 'Smart Bladder Pacemaker'

Date:
February 19, 2007
Source:
Duke University
Summary:
Duke University biomedical engineering researchers have moved a step closer to a "smart bladder pacemaker" that might one day restore bladder control in patients with spinal cord injury or neurological disease. The team's findings show that a device that taps into the urinary "circuit" in the spinal cord could selectively coordinate the contraction and release of muscles required for maintaining continence.

Duke University biomedical engineering researchers have moved a step closer to a "smart bladder pacemaker" that might one day restore bladder control in patients with spinal cord injury or neurological disease.

The team's latest findings show that a device that taps into the urinary "circuit" in the spinal cord could selectively coordinate the contraction and release of muscles required for maintaining continence.

Warren Grill of Duke's Pratt School of Engineering and his colleagues have shown in cats that electrical stimulation can engage the spinal circuitry to effectively empty the bladder, while delivery of lower frequency pulses to the same nerve can significantly increase bladder capacity and improve continence.

In fact, manipulating the nervous system provides a more flexible way of influencing urinary function than would direct bladder stimulation, Grill said.

"Stimulating the bladder directly can cause it only to contract, not to keep it from contracting," Grill said. "We stimulate the sensory inputs in the spinal cord to orchestrate either the inhibition or activation of urination.

"This illustrates an important principle: we can use the 'smarts' of the nervous system to orchestrate control of complex functions," he said.

A similar approach might also have potential for stimulating the spinal reflexes that control locomotion, Grill added. Other investigators are testing such a system for use in physical therapy for people suffering from some form of paralysis, to help them learn to walk again.

Grill presented the team's findings on Friday, Feb. 16, at the annual meeting of the American Association for the Advancement of Science in San Francisco. His presentation was part of a symposium organized through the National Academies' Keck Futures Initiative. The research was supported by the National Institutes of Health and the Paralyzed Veterans of America Spinal Cord Research Foundation.

Individuals with severe spinal cord injuries generally cannot empty their bladders voluntarily, Grill said. Spinal cord injuries also can cause the bladder to become involuntarily overactive, contracting at low volume for ineffective release of urine.

Ineffective emptying of the bladder can lead to complications, including damage to the bladder and frequent urinary tract infections, he said. Therefore, most people with spinal cord injuries are fitted with catheters that carry away urine.

The Duke researchers recently showed in cats that intermittent stimulation of the pelvic nerve that controls the urinary spinal circuitry emptied 65 percent of the bladder volume. The electrical pulses were delivered at a high frequency, mimicking the normal rate of sensory nerve impulses.

"We knew that the sensory fibers that excite the bladder normally fire at a rate of 30 to 40 impulses per second," Grill said. "We used the same rate to trick the circuit to turn on."

In another study, the researchers investigated the use of lower frequency electrical pulses for blocking unwanted bladder contractions. Earlier studies found that continuous low-frequency pulses of the pelvic nerve can suppress involuntary bladder contractions to maintain continence and increase bladder volume by 60 to 110 percent.

However, Grill suspected that the method could be made even more successful by making it more selective, delivering inhibitory pulses only in response to bladder contractions rather than constantly.

"The sensory system is designed to ignore signals if they are delivered constantly," Grill said. An everyday example of this "habituation" effect is the way people become accustomed to the pressure of a watch against the skin and no longer feel it, he said.

Indeed, the researchers found that inhibiting the urinary circuit only when contractions were detected increased bladder capacity by another 15 percent over continuous stimulation.

The researchers monitored bladder contractions indirectly by recording electrical nerve impulses, a sensing method that could be readily incorporated into a device resembling a pacemaker, Grill said.

"We relied on electrical recording of nerve activity that is coincident with bladder contraction to deliver a conditional inhibitory stimulus," Grill said. "It's a fully bioelectric and practical way to improve urinary continence."

The team now is working with Duke University Medical Center researchers on a clinical feasibility study to examine the urinary reflexes of human patients with spinal cord injuries.


Story Source:

The above story is based on materials provided by Duke University. Note: Materials may be edited for content and length.


Cite This Page:

Duke University. "Biomedical Engineers Advance On 'Smart Bladder Pacemaker'." ScienceDaily. ScienceDaily, 19 February 2007. <www.sciencedaily.com/releases/2007/02/070218140942.htm>.
Duke University. (2007, February 19). Biomedical Engineers Advance On 'Smart Bladder Pacemaker'. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2007/02/070218140942.htm
Duke University. "Biomedical Engineers Advance On 'Smart Bladder Pacemaker'." ScienceDaily. www.sciencedaily.com/releases/2007/02/070218140942.htm (accessed September 20, 2014).

Share This



More Health & Medicine News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com
How The 'Angelina Jolie Effect' Increased Cancer Screenings

How The 'Angelina Jolie Effect' Increased Cancer Screenings

Newsy (Sep. 19, 2014) Angelina's Jolie's decision to undergo a preventative mastectomy in 2013 inspired many women to seek early screenings for the disease. Video provided by Newsy
Powered by NewsLook.com
The Cost of Ebola

The Cost of Ebola

Reuters - Business Video Online (Sep. 18, 2014) As Sierra Leone prepares for a three-day "lockdown" in its latest bid to stem the spread of Ebola, Ciara Lee looks at the financial implications of fighting the largest ever outbreak of the disease. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins