Featured Research

from universities, journals, and other organizations

Casimir Effect Heats Up

Date:
February 23, 2007
Source:
American Institute of Physics
Summary:
For the first time, a group led by Nobel laureate Eric Cornell at the National Institute of Standards and Technology and the University of Colorado in Boulder has confirmed a 1955 prediction, by physicist Evgeny Lifschitz, that temperature affects the Casimir force, the attraction between two objects when they come to within 5 millionths of a meter (approximately 1/5,000 of an inch) of each other or less. These efforts heighten the understanding of the force and enable future experiments to better account for its effects.

For the first time, a group led by Nobel laureate Eric Cornell at the National Institute of Standards and Technology and the University of Colorado in Boulder has confirmed a 1955 prediction, by physicist Evgeny Lifschitz, that temperature affects the Casimir force, the attraction between two objects when they come to within 5 millionths of a meter (approximately 1/5,000 of an inch) of each other or less. These efforts heighten the understanding of the force and enable future experiments to better account for its effects.

Related Articles


Tiny as it is, the Casimir effect causes parts in nano- and microelectromechanical systems (NEMS and MEMS) to stick together. It confounds tabletop experimental efforts to detect exotic new forces beyond those predicted by Newtonian gravity and the Standard Model of particle physics.

In their work, the researchers investigated the Casimir-Polder force, the attraction between a neutral atom and a nearby surface. The Colorado group sent ultracold rubidium atoms to within a few microns of a glass surface. Doubling the temperature of the glass to 600 degrees Kelvin while keeping the surroundings near room temperature caused the glass to increase its attractive force threefold, confirming theoretical predictions recently made by the group's theorist co-authors in Trento, Italy.

What was happening here? The Casimir force arises from effects of the vacuum (empty space). According to quantum mechanics, the vacuum contains fleeting electromagnetic waves, in turn consisting of electric and magnetic fields. The electric fields can slightly rearrange the charge in atoms. Such "polarized" atoms can then feel a force from an electric field. The vacuum's electric fields are altered by the presence of the glass, creating a region of maximum electric field that attracts the atoms. In addition, heat inside the glass also drives the fleeting electromagnetic waves, some of which leak onto the surface as "evanescent waves." These evanescent waves have a maximum electric field on the surface and further attract the atoms.

Electromagnetic waves from heat in the rest of the environment would usually cancel out the thermal attraction from the glass surface. However, dialing up the temperature on the glass tilts the playing field in favor of glass's thermal force and heightens the attraction between the wall and the atoms.

Reference: Obrecht et al., Physical Review Letters, 9 February 2007


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Cite This Page:

American Institute of Physics. "Casimir Effect Heats Up." ScienceDaily. ScienceDaily, 23 February 2007. <www.sciencedaily.com/releases/2007/02/070220144759.htm>.
American Institute of Physics. (2007, February 23). Casimir Effect Heats Up. ScienceDaily. Retrieved January 30, 2015 from www.sciencedaily.com/releases/2007/02/070220144759.htm
American Institute of Physics. "Casimir Effect Heats Up." ScienceDaily. www.sciencedaily.com/releases/2007/02/070220144759.htm (accessed January 30, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, January 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Reuters - Innovations Video Online (Jan. 30, 2015) — A nanosensor that mimics the oral effects and sensations of drinking wine has been developed by Danish and Portuguese researchers. Jim Drury saw it in operation. Video provided by Reuters
Powered by NewsLook.com
Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

RightThisMinute (Jan. 29, 2015) — If your car has an "Insane Mode" then you know it&apos;s fast. Well, these unsuspecting passengers were in for one insane ride when they hit the button. Tesla cars are awesome. Video provided by RightThisMinute
Powered by NewsLook.com
Now Bill Gates Is 'Concerned' About Artificial Intelligence

Now Bill Gates Is 'Concerned' About Artificial Intelligence

Newsy (Jan. 29, 2015) — Bill Gates joins the list of tech moguls scared of super-intelligent machines. He says more people should be concerned, but why? Video provided by Newsy
Powered by NewsLook.com
Senate Passes Bill for Keystone XL Pipeline

Senate Passes Bill for Keystone XL Pipeline

AP (Jan. 29, 2015) — The Republican-controlled Senate has passed a bipartisan bill approving construction of the Keystone XL oil pipeline. (Jan. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins