Featured Research

from universities, journals, and other organizations

Novel Salamander Robot Crawls Its Way Up The Evolutionary Ladder

Date:
March 9, 2007
Source:
Ecole Polytechnique Fédérale de Lausanne
Summary:
A group of European researchers has developed a spinal cord model of the salamander and implemented it in a novel amphibious salamander-like robot. The robot changes its speed and gait in response to simple electrical signals, suggesting that the distributed neural system in the spinal cord holds the key to vertebrates' complex locomotor capabilities.

The EPFL Salamander Robot walks down to the waters of Lake Geneva.
Credit: Photograph by A. Badertscher, courtesy Biologically Inspired Robotics Group, EPFL

A group of European researchers has developed a spinal cord model of the salamander and implemented it in a novel amphibious salamander-like robot. The robot changes its speed and gait in response to simple electrical signals, suggesting that the distributed neural system in the spinal cord holds the key to vertebrates' complex locomotor capabilities.

Related Articles


In a paper appearing in the journal Science, scientists from the EPFL in Switzerland and the INSERM research center/University of Bordeaux in France introduce their robot, Salamandra Robotica. This four-legged yellow creature reveals a great deal about the evolution of vertebrate locomotion. It's also a vivid demonstration that robots can be used to test and verify biological concepts, and that very often nature herself offers ideal solutions for robotics design.

The researchers used a numerical model of the salamander's spinal cord to explore three fundamental issues related to this vertebrate's movement: what were the changes in the spinal cord that made it possible to evolve from aquatic to terrestrial locomotion? How are the limb and axial movements coordinated? And how is a simple electrical signal from the brain stem translated by the spinal cord into a change in gait?

Once they thought they had answers to these questions, the team implemented the model -- a system of coupled oscillators representing the neural networks in the spinal cord -- on a primitive salamander-like robot. Simple electrical signals, like the signals sent from the upper brain to the spinal cord, were sent wirelessly from a laptop to the robot. These signals were enough to cause the robot to change its speed and direction and change from walking to swimming. The model therefore provides a potential explanation -- relevant for all four-legged organisms -- of how agile locomotion is controlled by distributed neural mechanisms located in the spinal cord.

The robot serves here as a useful tool for neurobiology, explains EPFL professor Auke Ijspeert. "We used the robot to show that our model actually reflects reality.

The robot was very useful to validate that our model could effectively modulate speed, direction and gait -- aspects that need a mechanical "body" to be properly evaluated -- and also to verify that the generated movements are close to those of a real salamander."

This research may ultimately point to a way to gain better understanding of the more sophisticated circuits in the human spinal cord. If the control signals received by the spinal cord could be identified, perhaps it would be possible to re-initiate these by electrical stimulations in patients with spinal cord injuries.

And it's a vivid demonstration that biology offers unique ideas for robotics design. "Nature found a nice way of making a sophisticated circuit in the spinal cord and then controlling the muscles from there," notes Ijspeert. "It's a fantastic solution for coordinating multiple degrees of freedom in a simple distributed way." Robots that could change their speed, direction, and gait based on simple remote signals, like living organisms, would be extremely useful in search and rescue operations, for example.


Story Source:

The above story is based on materials provided by Ecole Polytechnique Fédérale de Lausanne. Note: Materials may be edited for content and length.


Cite This Page:

Ecole Polytechnique Fédérale de Lausanne. "Novel Salamander Robot Crawls Its Way Up The Evolutionary Ladder." ScienceDaily. ScienceDaily, 9 March 2007. <www.sciencedaily.com/releases/2007/03/070308220927.htm>.
Ecole Polytechnique Fédérale de Lausanne. (2007, March 9). Novel Salamander Robot Crawls Its Way Up The Evolutionary Ladder. ScienceDaily. Retrieved January 30, 2015 from www.sciencedaily.com/releases/2007/03/070308220927.htm
Ecole Polytechnique Fédérale de Lausanne. "Novel Salamander Robot Crawls Its Way Up The Evolutionary Ladder." ScienceDaily. www.sciencedaily.com/releases/2007/03/070308220927.htm (accessed January 30, 2015).

Share This


More From ScienceDaily



More Computers & Math News

Friday, January 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Newsweek's Tech Sexism Story: More Than Just A Cover

Newsweek's Tech Sexism Story: More Than Just A Cover

Newsy (Jan. 29, 2015) — Some objected to the art for Newsweek&apos;s cover story "What Silicon Valley Thinks of Women," but it&apos;s achieved one mission: getting people talking. Video provided by Newsy
Powered by NewsLook.com
Now Bill Gates Is 'Concerned' About Artificial Intelligence

Now Bill Gates Is 'Concerned' About Artificial Intelligence

Newsy (Jan. 29, 2015) — Bill Gates joins the list of tech moguls scared of super-intelligent machines. He says more people should be concerned, but why? Video provided by Newsy
Powered by NewsLook.com
Facebook Rides Video, Mobile Waves To A Huge Quarter

Facebook Rides Video, Mobile Waves To A Huge Quarter

Newsy (Jan. 29, 2015) — Mobile advertising now accounts for almost three quarters of Facebook’s total ad revenue. Video provided by Newsy
Powered by NewsLook.com
ISPs Angry After FCC Raises Requirement For Broadband Speed

ISPs Angry After FCC Raises Requirement For Broadband Speed

Newsy (Jan. 29, 2015) — In a move to increase competition, the Federal Communications Commission upped the speed necessary for an Internet service to be considered broadband. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins