Featured Research

from universities, journals, and other organizations

Future Space Telescopes Could Detect Earth Twin

Date:
April 12, 2007
Source:
NASA - Jet Propulsion Laboratory
Summary:
For the first time ever, NASA researchers have successfully demonstrated in the laboratory that a space telescope rigged with special masks and mirrors could snap a photo of an Earth-like planet orbiting a nearby star.

Three simulated planets -- one as bright as Jupiter, one half as bright as Jupiter and one as faint as Earth -- stand out plainly in this image created from a sequence of 480 images captured by the High Contrast Imaging Testbed at JPL. A roll-subtraction technique, borrowed from space astronomy, was used to distinguish planets from background light. The asterisk marks the location of the system's simulated star.
Credit: NASA: JPL-Caltech

For the first time ever, NASA researchers have successfully demonstrated in the laboratory that a space telescope rigged with special masks and mirrors could snap a photo of an Earth-like planet orbiting a nearby star. This accomplishment marks a dramatic step forward for missions like the proposed Terrestrial Planet Finder, designed to hunt for an Earth twin that might harbor life.

Trying to image an exoplanet - a planet orbiting a star other than the sun - is a daunting task, because its relatively dim glow is easily overpowered by the intense glare of its much bigger, brighter parent star. The challenge has been compared to looking for a firefly next to a searchlight.

Now, two researchers at NASA's Jet Propulsion Laboratory in Pasadena, Calif., have shown that a fairly simple coronagraph - an instrument used to "mask" a star's glare - paired with an adjustable mirror, could enable a space telescope to image a distant planet 10 billion times fainter than its central star.

"Our experiment demonstrates the suppression of glare extremely close to a star, clearing a field dark enough to allow us to see an Earth twin. This is at least a thousand times better than anything demonstrated previously," said John Trauger, lead author of a paper appearing in the April 12 issue of Nature. This paper describes the system, called the High Contrast Imaging Testbed, and how the technique could be used with a telescope in space to see exoplanets. The lab experiment used a laser as a simulated star, with fainter copies of the star serving as "planets."

To date, scientists have used various techniques to detect more than 200 exoplanets. Most of these exoplanets are from five to 4,000 times more massive than Earth, and are either too hot, too cold or too much of a giant gas ball to be considered likely habitats for life. So far, no one has managed to capture an image of an exoplanetary system that resembles our own solar system. Scientists are eager to take a closer look at nearby systems, to hunt for and then characterize any Earth-like planets - those with the right size, orbit and other traits considered friendly for life.

In the lab demonstration, the High Contrast and Imaging Testbed overcame two significant hurdles that all telescopes face when trying to image exoplanets - diffracted and scattered light.

When starlight hits the edge of a telescope's primary mirror, it becomes slightly disturbed, producing a pattern of rings or spikes surrounding the major source of light in the focused image. This diffracted light can completely obscure any planets in the field of view.

To address this problem, Trauger and his colleagues at JPL fashioned a pair of masks for their system. The first, which resembles a blurry barcode, directly blocks most of the starlight, while the second clears away the diffracted rings and spikes. The combination creates enough darkness to allow the light of any planets to shine through.

"Mathematically, and sort of magically, this coronagraph blocks both the central star and its rings," said Wesley Traub of JPL, co-author of the new paper and Terrestrial Planet Finder project scientist.

Scattered light presents the additional hurdle. Minor ripples on a telescope's mirror produce "speckles" - faint copies of a star, shifted to the side, which can also hide planets. In the High Contrast Imaging Testbed, a deformable mirror the size of a large coin limits scattered light. With a surface that can be altered ever so slightly by computer-controlled actuators, this mirror compensates for the effects of minor imperfections in the telescope and instrument.

"This result is important because it points the way to building a space telescope with the ability to detect and characterize Earth-like planets around nearby stars," Traub said.

For their next steps, Trauger and Traub plan to improve the suppression of speckles by a factor of 10, and extend the method to accommodate many wavelengths of light simultaneously.


Story Source:

The above story is based on materials provided by NASA - Jet Propulsion Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

NASA - Jet Propulsion Laboratory. "Future Space Telescopes Could Detect Earth Twin." ScienceDaily. ScienceDaily, 12 April 2007. <www.sciencedaily.com/releases/2007/04/070411134912.htm>.
NASA - Jet Propulsion Laboratory. (2007, April 12). Future Space Telescopes Could Detect Earth Twin. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2007/04/070411134912.htm
NASA - Jet Propulsion Laboratory. "Future Space Telescopes Could Detect Earth Twin." ScienceDaily. www.sciencedaily.com/releases/2007/04/070411134912.htm (accessed September 22, 2014).

Share This



More Space & Time News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's MAVEN Spacecraft Has Finally Reached Mars

NASA's MAVEN Spacecraft Has Finally Reached Mars

Newsy (Sep. 22, 2014) After a 10-month voyage through space, NASA's MAVEN spacecraft is now orbiting the Red Planet. Video provided by Newsy
Powered by NewsLook.com
Raw: SpaceX Rocket Carries 3-D Printer to Space

Raw: SpaceX Rocket Carries 3-D Printer to Space

AP (Sep. 22, 2014) A SpaceX Rocket launched from Cape Canaveral, carrying a custom-built 3-D printer into space. NASA envisions astronauts one day using the printer to make their own spare parts. (Sept. 22) Video provided by AP
Powered by NewsLook.com
SpaceX Cargo Ship Blasts Off Toward Space Station

SpaceX Cargo Ship Blasts Off Toward Space Station

AFP (Sep. 21, 2014) SpaceX's unmanned Dragon cargo ship blasts off toward the International Space Station, carrying a load of supplies and science experiments for the astronauts living there. Duration: 00:35 Video provided by AFP
Powered by NewsLook.com
NASA's MAVEN To Study Martian Atmosphere

NASA's MAVEN To Study Martian Atmosphere

Newsy (Sep. 21, 2014) NASA's Maven will soon give information that could explain what happened to Mars' atmosphere. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins