Featured Research

from universities, journals, and other organizations

Cortex Area Thinner In Youth With Alzheimer's-related Gene

Date:
April 24, 2007
Source:
NIH/National Institute of Mental Health
Summary:
A part of the brain first affected by Alzheimer's disease is thinner in youth with a risk gene for the disorder, a brain imaging study has found. A thinner entorhinal cortex may render these youth more susceptible to degenerative changes and mental decline later in life. This learning and memory hub is thinner in youth with the Alzheimer's-releated ApoE4 variant of the apolipoprotein gene, perhaps lowering the threshold for adverse consequences with aging-related tissue loss.

Entorhinal cortex (red) was thinnest in youth with Alzheimer's-related ApoE4 gene variant. View of left entorhinal cortex from beneath the brain, with front of brain at top. Artist's rendering.
Credit: Philip Shaw, M.D., NIMH Child Psychiatry Branch

A part of the brain first affected by Alzheimer's disease is thinner in youth with a risk gene for the disorder, a brain imaging study by researchers at the National Institute of Mental Health (NIMH), one of the National Institutes of Health (NIH), has found. A thinner entorhinal cortex, a structure in the lower middle part of the brain's outer mantle, may render these youth more susceptible to degenerative changes and mental decline later in life, propose Drs. Philip Shaw, Judith Rapoport, Jay Giedd, and NIMH and McGill University colleagues. They report on how variation in the gene for apoliproprotein (ApoE), which plays a critical role in repair of brain cells, affects development of this learning and memory hub in the June, 2007 Lancet Neurology.

"People with the Alzheimer's-related variant of the ApoE gene might not be able to sustain much aging-related tissue loss in the entorhinal cortex before they cross a critical threshold," explained Shaw. "But the early thinning appears to be a harmless genetic variation rather than a disease-related change, as it did not affect youths' intellectual ability. Only long-term brain imaging studies of healthy aging adults will confirm whether this anatomical signature detectible in childhood predisposes for Alzheimer's."

It was already known that adults destined to develop Alzheimer's disease tend to have a smaller and less active entorhinal cortex. This structure is the first to shrink in volume and to develop the neurofibrillary tangles characteristic of the disorder.

Previous studies had also implicated in Alzheimer's one of three versions of a gene that produces ApoE. The ApoE4 variant occurs in 10-25 percent of the general population, but in 40 percent of late-onset Alzheimer's patients. The strongest genetic risk factor for the disease discovered to date, ApoE4 has been linked to altered brain activity in adults and impaired neuronal development.

Shaw and colleagues suspected that youth with ApoE4 would have a thinner entorhinal cortex. To confirm this, they compared the MRI (magnetic resonance imaging) scans of 239 healthy children and teens with their ApoE gene types. Many were re-scanned as they grew up to see if there was any ongoing thinning process traceable to ApoE4.

Each individual inherits two copies of the ApoE gene, one from each parent. Youth with at least one copy of the relatively rare ApoE2 variant -- which may confer a protective effect against developing Alzheimer's -- showed the thickest entorhinal cortex. This was the first evidence that the ApoE2 version, which is carried by 5-10 percent of the population, affects brain structure, say the researchers. Youth with two copies of ApoE3, the most common version (65-85% prevalence), had intermediate cortex thickness. Those with one or two copies of ApoE4 had the thinnest entorhinal cortex.

ApoE4 gene type also predicted thinning of two other brain regions (medial temporal and posterior orbitofrontal areas) affected early in Alzheimer's disease, which, like the entorhinal cortex, are involved in learning and memory. The pattern of changes resembled that seen in early Alzheimer's, but to a far lesser degree. For example, the entorhinal cortex thinning seen in Alzheimer's disease is about 10-fold greater than in the youth with ApoE4.

Although they did not test for possible learning and memory deficits, the researchers found no difference in IQ attributable to ApoE gene type. Nor did the E4 variant accelerate loss of cortex tissue. The differences were fixed, and didn't progress. In fact, the researchers noted evidence that ApoE4 may even promote survival in infancy and protect the brain's thinking capacity against damage from infectious illness.

"In the future we hope to determine whether this thinner cortex is associated with differences in brain activity during tasks of learning and memory in children," said Shaw.

Also participating in the research were: Kristin Taylor, A. Blyth Rose, Deanna Greenstein, Liv Clasen, NIMH; Jason Lerch, Jens Pruessner, Alan Evans, Montreal Neurological Institute, McGill University.


Story Source:

The above story is based on materials provided by NIH/National Institute of Mental Health. Note: Materials may be edited for content and length.


Cite This Page:

NIH/National Institute of Mental Health. "Cortex Area Thinner In Youth With Alzheimer's-related Gene." ScienceDaily. ScienceDaily, 24 April 2007. <www.sciencedaily.com/releases/2007/04/070423185439.htm>.
NIH/National Institute of Mental Health. (2007, April 24). Cortex Area Thinner In Youth With Alzheimer's-related Gene. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2007/04/070423185439.htm
NIH/National Institute of Mental Health. "Cortex Area Thinner In Youth With Alzheimer's-related Gene." ScienceDaily. www.sciencedaily.com/releases/2007/04/070423185439.htm (accessed September 2, 2014).

Share This




More Mind & Brain News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
Coffee Then Napping: The (New) Key To Alertness

Coffee Then Napping: The (New) Key To Alertness

Newsy (Aug. 30, 2014) Researchers say having a cup of coffee then taking a nap is more effective than a nap or coffee alone. Video provided by Newsy
Powered by NewsLook.com
Young Entrepreneurs Get $100,000, If They Quit School

Young Entrepreneurs Get $100,000, If They Quit School

AFP (Aug. 29, 2014) Twenty college-age students are getting 100,000 dollars from a Silicon Valley leader and a chance to live in San Francisco in order to work on the start-up project of their dreams, but they have to quit school first. Duration: 02:20 Video provided by AFP
Powered by NewsLook.com
Baby Babbling Might Lead To Faster Language Development

Baby Babbling Might Lead To Faster Language Development

Newsy (Aug. 29, 2014) A new study suggests babies develop language skills more quickly if their parents imitate the babies' sounds and expressions and talk to them often. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins