Featured Research

from universities, journals, and other organizations

Scientists Create Prosthesis Of The Future

Date:
May 2, 2007
Source:
Arizona State University
Summary:
Researchers are teaming up to create the next generation of powered prosthetic devices based on lightweight energy storing springs. The device, nicknamed SPARKy, short for Spring Ankle with Regenerative Kinetics, will be a first-of-its-kind smart, active and energy-storing transtibial (below-the-knee) prosthesis.

Doctoral students Matthew Holgate, left, and Joseph Hitt, right, with SPARKy, short for Spring Ankle with Regenerative Kinetics.
Credit: Image courtesy of Arizona State University

Researchers at Arizona State University's Polytechnic campus and the Military Amputee Research Program at Walter Reed Army Medical Center are teaming up to create the next generation of powered prosthetic devices based on lightweight energy storing springs.

The device, nicknamed SPARKy, short for Spring Ankle with Regenerative Kinetics, will be a first-of-its-kind smart, active and energy-storing transtibial (below-the-knee) prosthesis.

Existing technology in prosthetic devices is largely passive and requires the amputee to use 20 to 30 percent more energy to propel themselves forward when walking compared to an able-bodied person, according to Thomas Sugar, ASU assistant professor of engineering at the Polytechnic campus.

Once complete, SPARKy is expected to provide functionality with enhanced ankle motion and push-off power comparable to the gait of an able-bodied individual.

"A gait cycle describes the natural motion of walking starting with the heel strike of one foot and ending with the heel strike of the same foot," says Sugar. "The cycle can be split into two phases -- stance and swing. We are concerned with storing energy and releasing energy (regenerative kinetics) in the stance phase."

When you look at the mechanics of walking, it can be described as catching a series of falls, explains Sugar. In the team's device, a tuned spring brakes falls and stores energy as the leg rolls over the ankle during the stance phase, similar to the Achilles tendon.

Sugar's team, made up of doctoral students Joseph Hitt and Matthew Holgate, and ASU Barrett Honors College student Ryan Bellman, have coined SPARKy a robotic tendon because of its bionic properties.

"What we hope to create is a robotic tendon that actively stretches springs when the ankle rolls over the foot, thus allowing the springs to thrust or propel the artificial foot forward for the next step," said Sugar. "Because energy is stored, a lightweight motor can be used to adjust the position of a uniquely tuned spring that provides most of the power required for gait. Thus, less energy is required from the individual."

The team is the first to apply regenerative kinetics to design a lightweight prosthetic device. Others are using large motors combined with harmonic drives, a monopropellant or extremely high-pressure oil.

Sugar's team already has proof that SPARKy is working. In recent experiments with able-bodied subjects outfitted with a robotic ankle orthosis, or a powered assist device, the researchers found that the spring and motor combination was able to amplify the motor power by three-fold. This significant finding allows SPARKy to be downsized from a 6 to 7 kg motor system to a 1 kg (2 lb) system, which is significant weight savings for those who wear a prosthetic.

"We expect this device to revolutionize prosthetics and will be especially helpful for military personnel wounded in active duty," says Hitt.

The project is a multi-phased effort led by ASU's Human Machine Integration Lab, Arise Prosthetics, Phoenix, and Robotics Group Inc., Scottsdale, Ariz. Arise Prosthetics is helping in the fitting of the device and Robotics Group, Inc. is designing embedded processors and motor amplifiers.

The first phase of SPARKy featuring the robotic tendon is expected to be ready for demonstration in December 2007. "I will know it is successful when a wounded solider is able to walk using the device on a treadmill," said Sugar about this phase.

The project will culminate with the functionality to support walking in a daily environment, which is expected in 2009.


Story Source:

The above story is based on materials provided by Arizona State University. Note: Materials may be edited for content and length.


Cite This Page:

Arizona State University. "Scientists Create Prosthesis Of The Future." ScienceDaily. ScienceDaily, 2 May 2007. <www.sciencedaily.com/releases/2007/05/070501151726.htm>.
Arizona State University. (2007, May 2). Scientists Create Prosthesis Of The Future. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2007/05/070501151726.htm
Arizona State University. "Scientists Create Prosthesis Of The Future." ScienceDaily. www.sciencedaily.com/releases/2007/05/070501151726.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins