Featured Research

from universities, journals, and other organizations

Scientists Create Prosthesis Of The Future

Date:
May 2, 2007
Source:
Arizona State University
Summary:
Researchers are teaming up to create the next generation of powered prosthetic devices based on lightweight energy storing springs. The device, nicknamed SPARKy, short for Spring Ankle with Regenerative Kinetics, will be a first-of-its-kind smart, active and energy-storing transtibial (below-the-knee) prosthesis.

Doctoral students Matthew Holgate, left, and Joseph Hitt, right, with SPARKy, short for Spring Ankle with Regenerative Kinetics.
Credit: Image courtesy of Arizona State University

Researchers at Arizona State University's Polytechnic campus and the Military Amputee Research Program at Walter Reed Army Medical Center are teaming up to create the next generation of powered prosthetic devices based on lightweight energy storing springs.

Related Articles


The device, nicknamed SPARKy, short for Spring Ankle with Regenerative Kinetics, will be a first-of-its-kind smart, active and energy-storing transtibial (below-the-knee) prosthesis.

Existing technology in prosthetic devices is largely passive and requires the amputee to use 20 to 30 percent more energy to propel themselves forward when walking compared to an able-bodied person, according to Thomas Sugar, ASU assistant professor of engineering at the Polytechnic campus.

Once complete, SPARKy is expected to provide functionality with enhanced ankle motion and push-off power comparable to the gait of an able-bodied individual.

"A gait cycle describes the natural motion of walking starting with the heel strike of one foot and ending with the heel strike of the same foot," says Sugar. "The cycle can be split into two phases -- stance and swing. We are concerned with storing energy and releasing energy (regenerative kinetics) in the stance phase."

When you look at the mechanics of walking, it can be described as catching a series of falls, explains Sugar. In the team's device, a tuned spring brakes falls and stores energy as the leg rolls over the ankle during the stance phase, similar to the Achilles tendon.

Sugar's team, made up of doctoral students Joseph Hitt and Matthew Holgate, and ASU Barrett Honors College student Ryan Bellman, have coined SPARKy a robotic tendon because of its bionic properties.

"What we hope to create is a robotic tendon that actively stretches springs when the ankle rolls over the foot, thus allowing the springs to thrust or propel the artificial foot forward for the next step," said Sugar. "Because energy is stored, a lightweight motor can be used to adjust the position of a uniquely tuned spring that provides most of the power required for gait. Thus, less energy is required from the individual."

The team is the first to apply regenerative kinetics to design a lightweight prosthetic device. Others are using large motors combined with harmonic drives, a monopropellant or extremely high-pressure oil.

Sugar's team already has proof that SPARKy is working. In recent experiments with able-bodied subjects outfitted with a robotic ankle orthosis, or a powered assist device, the researchers found that the spring and motor combination was able to amplify the motor power by three-fold. This significant finding allows SPARKy to be downsized from a 6 to 7 kg motor system to a 1 kg (2 lb) system, which is significant weight savings for those who wear a prosthetic.

"We expect this device to revolutionize prosthetics and will be especially helpful for military personnel wounded in active duty," says Hitt.

The project is a multi-phased effort led by ASU's Human Machine Integration Lab, Arise Prosthetics, Phoenix, and Robotics Group Inc., Scottsdale, Ariz. Arise Prosthetics is helping in the fitting of the device and Robotics Group, Inc. is designing embedded processors and motor amplifiers.

The first phase of SPARKy featuring the robotic tendon is expected to be ready for demonstration in December 2007. "I will know it is successful when a wounded solider is able to walk using the device on a treadmill," said Sugar about this phase.

The project will culminate with the functionality to support walking in a daily environment, which is expected in 2009.


Story Source:

The above story is based on materials provided by Arizona State University. Note: Materials may be edited for content and length.


Cite This Page:

Arizona State University. "Scientists Create Prosthesis Of The Future." ScienceDaily. ScienceDaily, 2 May 2007. <www.sciencedaily.com/releases/2007/05/070501151726.htm>.
Arizona State University. (2007, May 2). Scientists Create Prosthesis Of The Future. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2007/05/070501151726.htm
Arizona State University. "Scientists Create Prosthesis Of The Future." ScienceDaily. www.sciencedaily.com/releases/2007/05/070501151726.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins