Featured Research

from universities, journals, and other organizations

Gamma-ray Bursts Active Longer Than Thought

Date:
May 24, 2007
Source:
NASA/Goddard Space Flight Center
Summary:
Using NASA's Swift satellite, astronomers have discovered that energetic flares seen after gamma-ray bursts are not just hiccups, they appear to be a continuation of the burst itself.

This artwork depicts the central engine of a gamma-ray burst. A powerful jet of radiation and fast-moving particles blasts its way out of the central region of a dying star. The jet is presumably powered by material spiraling into a black hole or neutron star. Multiple episodes of infall provides fuel for the engine, leading to the burst and later X-ray flares.
Credit: NASA / SkyWorks Digital

Using NASA’s Swift satellite, astronomers have discovered that energetic flares seen after gamma-ray bursts (GRBs) are not just hiccups, they appear to be a continuation of the burst itself.

GRBs release in seconds the same amount of energy our Sun will emit over its expected 10 billion-year lifetime. The staggering energy of a long-duration GRB (lasting more than a few seconds) comes from the core of a massive star collapsing to form a black hole or neutron star. In current theory, inrushing gas forms a disk around the central object. Magnetic fields channel some of that material into two jets moving at near-light speed. Collisions between shells of ejected material within the jet trigger the actual GRB.

Early in the mission, Swift’s X-ray Telescope (XRT) discovered that the initial pulse of gamma-rays, known as prompt emission, is often followed minutes to hours later by short-lived but powerful X-ray flares. The flares suggested — but did not prove — that GRB central engines remain active long after the prompt emission.

After analyzing GRB 060714, named for its detection date of July 14, 2006, Hans Krimm of Universities Space Research Association, Columbia, Md. and NASA’s Goddard Space Flight Center in Greenbelt, Md., and eight colleagues, have demonstrated that X-ray flares are indeed a continuation of the prompt emission, showing that GRB central engines are active much longer than previously thought.

Swift’s Burst Alert Telescope (BAT) picked up the initial GRB in the constellation Libra. Then, from about 70 to 200 seconds after the initial burst, the BAT and XRT registered five flares. Each flare exhibited rapid and large-scale variability in intensity, but the overall energy steadily diminished from flare to flare. Moreover, the peak photon energy of each flare “softened” by progressing from gamma-rays to X-rays (from higher to lower energy).

The prompt gamma-ray emission and the subsequent X-ray flares appear to form a continuously connected and evolving succession of events. “This pattern points to a continuous injection of energy from the central engine, perhaps fueled by sporadic infall of material onto a black hole. The black hole just keeps gobbling up gas and the engine keeps spewing out energy,” says Krimm, whose paper is scheduled for publication in the August 10 Astrophysical Journal.

The rapid and large-scale variability of the X-ray flares argues strongly against the idea that they come from jets sweeping up the surrounding gas. Since the observed emission comes from a wide region, the afterglow should vary smoothly with time. Nobody has come up with a viable explanation for why the surrounding material would be so lumpy to lead to such rapid variability. "This particular GRB had a series of flares over a wide range in time that were bright enough that we could study their properties in detail,” says study coauthor Jonathan Granot of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, Stanford, Calif. “It clearly shows a gradual evolution with time in the properties of the flares within the same GRB, while in other GRBs there are typically only one or two flares that are bright enough to be studied in detail, making it very hard to reach a similar conclusion." "This is a very important result," adds Swift principal investigator and study coauthor Neil Gehrels of NASA Goddard. "By chance, if you look at enough bursts you’ll find the one that opens the door. GRB 060714 shows that everything happening in the first few minutes is driven by the central engine."

Swift is managed by NASA’s Goddard Space Flight Center and was built and is operated in collaboration with Penn State University, the Los Alamos National Laboratory, and General Dynamics in the US; the University of Leicester and Mullard Space Sciences Laboratory in the UK; Brera Observatory and the Italian Space Agency in Italy; plus partners in Germany and Japan.


Story Source:

The above story is based on materials provided by NASA/Goddard Space Flight Center. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Goddard Space Flight Center. "Gamma-ray Bursts Active Longer Than Thought." ScienceDaily. ScienceDaily, 24 May 2007. <www.sciencedaily.com/releases/2007/05/070523103847.htm>.
NASA/Goddard Space Flight Center. (2007, May 24). Gamma-ray Bursts Active Longer Than Thought. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2007/05/070523103847.htm
NASA/Goddard Space Flight Center. "Gamma-ray Bursts Active Longer Than Thought." ScienceDaily. www.sciencedaily.com/releases/2007/05/070523103847.htm (accessed August 23, 2014).

Share This




More Space & Time News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Newsy (Aug. 21, 2014) Russian cosmonauts say they've found evidence of sea plankton on the International Space Station's windows. NASA is a little more skeptical. Video provided by Newsy
Powered by NewsLook.com
Space to Ground: Hello Georges

Space to Ground: Hello Georges

NASA (Aug. 18, 2014) Europe's ATV-5 delivers new science and the crew tests smart SPHERES. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com
This Week @ NASA, August 15, 2014

This Week @ NASA, August 15, 2014

NASA (Aug. 15, 2014) Carbon Observatory’s First Data, ATV-5 Delivers Cargo, Cygnus Departs Station and more... Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins