Featured Research

from universities, journals, and other organizations

New Adult Brain Cells May Be Central To Lifelong Learning

Date:
May 25, 2007
Source:
Cell Press
Summary:
The steady formation of new brain cells in adults may represent more than merely a patching up of aging brains, a new study has shown. The new adult brain cells may serve to give the adult brain the same kind of learning ability that young brains have while still allowing the existing, mature circuitry to maintain stability.

The steady formation of new brain cells in adults may represent more than merely a patching up of aging brains, a new study has shown. The new adult brain cells may serve to give the adult brain the same kind of learning ability that young brains have while still allowing the existing, mature circuitry to maintain stability.

Related Articles


In their experiments, Hongjun Song and colleagues used a virus to selectively label new brain cells with a fluorescent protein in the hippocampus, a major brain center for learning and memory, of adult mice.

The researchers then analyzed the electrophysiological properties of the new neurons at different times after their formation. This analysis enabled them to measure how adaptable, or "plastic," the brain cells were.

They found that the new adult neurons showed a pattern of changing plasticity very similar to that seen in brain cells in newborn animals. That is, the new adult brain cells showed a "critical period" in which they were highly plastic before they settled into the less plastic properties of mature brain cells. In newborn animals, such a critical period enables an important, early burst of wiring of new brain circuitry with experience.

What's more, the researchers' molecular analysis showed that the plasticity of new adult neurons depended on the function of one of the same types of receptors that is associated with learning-related processes in newborn animals. Such receptors are the receiving stations for chemical signals called neurotransmitters, launched from neighboring neurons to trigger a nerve impulse in the receiving neurons. Subtle alterations in receptor populations are the means by which the brain wires the preferred pathways in the process of learning and memory.

The researchers also observed in the new adult neurons anatomical evidence of the same kind of formation of new connections that take place in the brains of newborns as they wire new pathways in response to experience.

The researchers wrote that, since the adult form of critical-period plasticity resembles that seen in young brains, "adult-born neurons within the critical period may serve as major mediators for experience-driven plasticity and therefore function as special units in the adult circuitry to contribute to specific brain functions throughout life."

They concluded that "adult neurogenesis may represent not merely a replacement mechanism for lost neurons, but instead an ongoing developmental process that continuously rejuvenates the mature nervous system by offering expanded capacity of plasticity in response to experience throughout life."

The researchers include Shaoyu Ge, Johns Hopkins University School of Medicine, Baltimore; Chih-hao Yang, Johns Hopkins University School of Medicine, Baltimore and National Cheng Kung University; Kuei-sen Hsu, National Cheng Kung University; Guo-li Ming and Hongjun Song, Johns Hopkins University School of Medicine, Baltimore.

This study was supported by the Whitehall Foundation, Sloan Scholar, and Klingenstein Fellowship Award in the Neuroscience to G.-l.M., by the National Institute of Health (NS047344 and AG024984), McKnight Scholar Award, and the Rett Syndrome Research Foundation to H.S., and by a postdoctoral fellowship from the American Heart Association to S.G..

Reference: Ge et al.: "A Critical Period for Enhanced Synaptic Plasticity in Newly Generated Neurons of the Adult Brain." Publishing in Neuron 54, 559--566, May 24, 2007. DOI 10.1016/j.neuron.2007.05.002.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Cite This Page:

Cell Press. "New Adult Brain Cells May Be Central To Lifelong Learning." ScienceDaily. ScienceDaily, 25 May 2007. <www.sciencedaily.com/releases/2007/05/070523124407.htm>.
Cell Press. (2007, May 25). New Adult Brain Cells May Be Central To Lifelong Learning. ScienceDaily. Retrieved April 19, 2015 from www.sciencedaily.com/releases/2007/05/070523124407.htm
Cell Press. "New Adult Brain Cells May Be Central To Lifelong Learning." ScienceDaily. www.sciencedaily.com/releases/2007/05/070523124407.htm (accessed April 19, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Sunday, April 19, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Our Love Of Puppy Dog Eyes Explained By Science

Our Love Of Puppy Dog Eyes Explained By Science

Newsy (Apr. 17, 2015) Researchers found a spike in oxytocin occurs in both humans and dogs when they gaze into each other&apos;s eyes. Video provided by Newsy
Powered by NewsLook.com
Scientists Find Link Between Gestational Diabetes And Autism

Scientists Find Link Between Gestational Diabetes And Autism

Newsy (Apr. 17, 2015) Researchers who analyzed data from over 300,000 kids and their mothers say they&apos;ve found a link between gestational diabetes and autism. Video provided by Newsy
Powered by NewsLook.com
Video Messages Help Reassure Dementia Patients

Video Messages Help Reassure Dementia Patients

AP (Apr. 17, 2015) Family members are prerecording messages as part of a unique pilot program at the Hebrew Home in New York. The videos are trying to help victims of Alzheimer&apos;s disease and other forms of dementia break through the morning fog of forgetfulness. (April 17) Video provided by AP
Powered by NewsLook.com
Common Pain Reliever Might Dull Your Emotions

Common Pain Reliever Might Dull Your Emotions

Newsy (Apr. 16, 2015) Each week, millions of Americans take acetaminophen to dull minor aches and pains. Now researchers say it might blunt life&apos;s highs and lows, too. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins