Featured Research

from universities, journals, and other organizations

A Gloomy Mars Warms Up

Date:
May 28, 2007
Source:
NASA Ames Research Center
Summary:
For the past 30 years, NASA scientists have been using high-tech satellite equipment to study features on the face of Mars. It appears a slight change in the planet's surface luster has caused its temperature to rise. To determine the extent of surface changes on Mars, scientists took images from previous satellite missions and mapped them into a climate model. They discovered that a wind-whipped, dusty surface has a measurable effect on the amount of sunlight that is reflected by the planet.

Changes in the surface albedo (A) of Mars over a 20 year period. Blue areas indicate regions that have darkened and yellow areas indicate regions that have brightened. Changes are superimposed on an albedo map from 1997, derived from Mars Global Surveyor data.

For the past 30 years, NASA scientists have been using high-tech satellite equipment to study features on the face of Mars. It appears a slight change in the planet’s surface luster has caused its temperature to rise.

Related Articles


To determine the extent of surface changes on Mars, scientists took images from the Viking (launched 1975) and Mars Global Surveyor (1996) satellite missions and mapped them into a climate model developed at NASA Ames Research Center. They discovered that a wind-whipped, dusty surface has a measurable effect on the amount of sunlight that is reflected by the planet. The results of this research show that an increase in darkened surface areas may account for a one degree Fahrenheit rise in the surface air temperature of the planet.

“We know that warmer temperatures and increased wind strengths are near the darkened areas where less sunlight is reflected by the surface, and cooler temperatures and weakened winds generally correspond to brightened areas” explained Lori Fenton, the experiment’s principal investigator at NASA Ames Research Center, in California's Silicon Valley. “What we don’t understand is how these changes in the planet’s brightness affect the martian climate.”

“Albedo” is the technical term for a planet’s ability to reflect sunlight. According to scientists, variations in the planet’s albedo are generally attributed to changes in distribution of dust on the surface.

Research indicates that as the dark areas on Mars expand and darken over time, its albedo decreases, and its surface air temperature rise. Large surface areas, some almost twice the size of the continent of Africa (over 34 million square miles), have been observed to darken or brighten by 10 percent or more, which speaks to the magnitude of these global surface changes.

“The coupling of these processes with albedo changes could produce a surface-atmosphere feedback loop, in which surface albedo reductions, or darkened areas, enhance the windiness and dust devil formation that produce surface changes. Increased heating near the surface leads to greater atmospheric instability,” explained Fenton.

In other words, scientists think that when surface areas darken and expand, relatively more energy from the sun is being absorbed by the surface, which causes temperatures to rise near the surface. This, in turn, produces a less stable atmosphere generating more turbulent eddies and whirling dust devils. The more dust that is redistributed to bright surfaces, the more surfaces darken and expand, which causes more sunlight to be absorbed, increased temperatures, and less stable the atmosphere, say scientists.

“In particular, the slight increase in surface air temperature is similar to climate variations seen on Earth, even though the processes involved are significantly different,” added Fenton.

Moreover, scientists suspect that a change in global surface albedo could influence the formation of dust storms on both local and global scales. They report that the surface brightening and atmospheric cooling following the 2001 global dust storm may affect the timing of future large dust storms. Research demonstrates that surface areas may brighten depending on the way dust settles, which would suppress winds and ‘dust devil’ formation, the two mechanisms potentially responsible for dust storm initiation.

“Although the events that trigger dust storms have yet to be understood, this work demonstrates that one contributing factor may be a decrease in surface albedo. Martian climate indicators, such as global dust storm occurrences, polar energy balance, and annual global-mean air temperature, are dependent on many interrelated and poorly understood processes. By investigating solely the effects of changes in surface albedo (from two very different Mars years), we have shown that albedo interacts with, and could in part drive, other climate-influencing processes on Mars,” said Fenton.

These and related studies appeared in Nature, 2007.


Story Source:

The above story is based on materials provided by NASA Ames Research Center. Note: Materials may be edited for content and length.


Cite This Page:

NASA Ames Research Center. "A Gloomy Mars Warms Up." ScienceDaily. ScienceDaily, 28 May 2007. <www.sciencedaily.com/releases/2007/05/070527101114.htm>.
NASA Ames Research Center. (2007, May 28). A Gloomy Mars Warms Up. ScienceDaily. Retrieved January 30, 2015 from www.sciencedaily.com/releases/2007/05/070527101114.htm
NASA Ames Research Center. "A Gloomy Mars Warms Up." ScienceDaily. www.sciencedaily.com/releases/2007/05/070527101114.htm (accessed January 30, 2015).

Share This


More From ScienceDaily



More Space & Time News

Friday, January 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA Holds Memorial to Remember Astronauts

NASA Holds Memorial to Remember Astronauts

AP (Jan. 29, 2015) NASA is remembering 17 astronauts who were killed in the line of duty and dozens more who have died since the agency&apos;s beginning. A remembrance ceremony was held Thursday at NASA&apos;s Marshall Space Flight Center in Alabama. (Jan. 29) Video provided by AP
Powered by NewsLook.com
Asteroid's Moon Spotted During Earth Flyby

Asteroid's Moon Spotted During Earth Flyby

Rumble (Jan. 27, 2015) Scientists working with NASA&apos;s Deep Space Network antenna at Goldstone, California discovered an unexpected moon while observing asteroid 2004 BL86 during its recent flyby past Earth. Credit to &apos;NASA JPL&apos;. Video provided by Rumble
Powered by NewsLook.com
Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
Mars Rover Opportunity Celebrates 11-Year Anniversary

Mars Rover Opportunity Celebrates 11-Year Anniversary

Rumble (Jan. 26, 2015) Eleven years ago NASA&apos;s Opportunity rover touched down on Mars for what was only supposed to be a 90-day mission. Since then it has traveled 25.9 miles (41.7 kilometers), further than any other off-Earth surface vehicle has ever driven. Credit to &apos;NASA&apos;. Video provided by Rumble
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins