Featured Research

from universities, journals, and other organizations

A Step Forward In Understanding Tissue Damage After Spinal Cord Injury

Date:
July 30, 2007
Source:
Journal of Clinical Investigation
Summary:
New research shows that calcium-activated cation channels in capillaries surrounding spinal cord tissue are critical to the process that causes spinal cord tissue loss after acute cord injury, and as such are a potential target in the therapy of spinal cord injuries.

Acute spinal cord injury can damage spinal cord tissue and result in loss of functions such as mobility or feeling.

In a study appearing online on July 26 in advance of publication in the August print issue of the Journal of Clinical Investigation, J. Marc Simard and colleagues from the University of Maryland at Baltimore show that calcium-activated cation channels in capillaries surrounding spinal cord tissue are critical to the process that causes spinal cord tissue loss after acute cord injury, and as such are a potential target in the therapy of spinal cord injuries.

The authors showed that spinal cord injury in otherwise healthy rats caused a lesion in spinal cord tissue that progressively expanded in size and was accompanied by a fragmentation of surrounding capillaries, resulting in hemorrhage, tissue necrosis, and neurological dysfunction. The expression of sulfonylurea receptor 1 (SUR1) was increased in the capillaries and neurons surrounding the lesion and also associated with expression of SUR1-regulated, calcium-activated cation channels known as NC[Ca-ATP] channels.

The authors went on to show that suppression or blockade of SUR1 activity following spinal cord injury essentially eliminated capillary fragmentation and hemorrhage, reduced spinal cord tissue damage 3-fold, and resulted in marked improvement in mobility in treated versus untreated animals.

The results of the study suggest that SUR1-regulated NC[Ca-ATP] channels in the lining of capillaries are critical to the development of progressive hemorrhagic necrosis following spinal cord injury, and as such may constitute a target for therapy in spinal cord injury.


Story Source:

The above story is based on materials provided by Journal of Clinical Investigation. Note: Materials may be edited for content and length.


Cite This Page:

Journal of Clinical Investigation. "A Step Forward In Understanding Tissue Damage After Spinal Cord Injury." ScienceDaily. ScienceDaily, 30 July 2007. <www.sciencedaily.com/releases/2007/07/070726185300.htm>.
Journal of Clinical Investigation. (2007, July 30). A Step Forward In Understanding Tissue Damage After Spinal Cord Injury. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2007/07/070726185300.htm
Journal of Clinical Investigation. "A Step Forward In Understanding Tissue Damage After Spinal Cord Injury." ScienceDaily. www.sciencedaily.com/releases/2007/07/070726185300.htm (accessed August 28, 2014).

Share This




More Health & Medicine News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

CDC Director On Ebola Outbreak: 'It's Worse Than I Feared'

CDC Director On Ebola Outbreak: 'It's Worse Than I Feared'

Newsy (Aug. 28, 2014) CDC director Tom Frieden says the Ebola outbreak is even worse than he feared. But he also said there's still hope to contain it. Video provided by Newsy
Powered by NewsLook.com
Treadmill 'trips' May Reduce Falls for Elderly

Treadmill 'trips' May Reduce Falls for Elderly

AP (Aug. 28, 2014) Scientists are tripping the elderly on purpose in a Chicago lab in an effort to better prevent seniors from falling and injuring themselves in real life. (Aug.28) Video provided by AP
Powered by NewsLook.com
Japan's Golden Generation Shows No Sign of Slowing Down

Japan's Golden Generation Shows No Sign of Slowing Down

AFP (Aug. 27, 2014) For many people in the autumn of their lives, walking up stairs is the biggest physical challenge they face. But in Japan, race tracks, hammer or pole vault await competitors at the Kyoto Masters, some of them more than 100 years old. Duration: 02:32 Video provided by AFP
Powered by NewsLook.com
Mini Pacemaker Has No Wires

Mini Pacemaker Has No Wires

Ivanhoe (Aug. 27, 2014) Cardiac experts are testing a new experimental device designed to eliminate major surgery and still keep the heart on track. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins