Featured Research

from universities, journals, and other organizations

A Step Forward In Understanding Tissue Damage After Spinal Cord Injury

Date:
July 30, 2007
Source:
Journal of Clinical Investigation
Summary:
New research shows that calcium-activated cation channels in capillaries surrounding spinal cord tissue are critical to the process that causes spinal cord tissue loss after acute cord injury, and as such are a potential target in the therapy of spinal cord injuries.

Acute spinal cord injury can damage spinal cord tissue and result in loss of functions such as mobility or feeling.

In a study appearing online on July 26 in advance of publication in the August print issue of the Journal of Clinical Investigation, J. Marc Simard and colleagues from the University of Maryland at Baltimore show that calcium-activated cation channels in capillaries surrounding spinal cord tissue are critical to the process that causes spinal cord tissue loss after acute cord injury, and as such are a potential target in the therapy of spinal cord injuries.

The authors showed that spinal cord injury in otherwise healthy rats caused a lesion in spinal cord tissue that progressively expanded in size and was accompanied by a fragmentation of surrounding capillaries, resulting in hemorrhage, tissue necrosis, and neurological dysfunction. The expression of sulfonylurea receptor 1 (SUR1) was increased in the capillaries and neurons surrounding the lesion and also associated with expression of SUR1-regulated, calcium-activated cation channels known as NC[Ca-ATP] channels.

The authors went on to show that suppression or blockade of SUR1 activity following spinal cord injury essentially eliminated capillary fragmentation and hemorrhage, reduced spinal cord tissue damage 3-fold, and resulted in marked improvement in mobility in treated versus untreated animals.

The results of the study suggest that SUR1-regulated NC[Ca-ATP] channels in the lining of capillaries are critical to the development of progressive hemorrhagic necrosis following spinal cord injury, and as such may constitute a target for therapy in spinal cord injury.


Story Source:

The above story is based on materials provided by Journal of Clinical Investigation. Note: Materials may be edited for content and length.


Cite This Page:

Journal of Clinical Investigation. "A Step Forward In Understanding Tissue Damage After Spinal Cord Injury." ScienceDaily. ScienceDaily, 30 July 2007. <www.sciencedaily.com/releases/2007/07/070726185300.htm>.
Journal of Clinical Investigation. (2007, July 30). A Step Forward In Understanding Tissue Damage After Spinal Cord Injury. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2007/07/070726185300.htm
Journal of Clinical Investigation. "A Step Forward In Understanding Tissue Damage After Spinal Cord Injury." ScienceDaily. www.sciencedaily.com/releases/2007/07/070726185300.htm (accessed August 21, 2014).

Share This




More Health & Medicine News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
American Ebola Patients Released: What Cured Them?

American Ebola Patients Released: What Cured Them?

Newsy (Aug. 21, 2014) It's unclear whether the American Ebola patients' recoveries can be attributed to an experimental drug or early detection and good medical care. Video provided by Newsy
Powered by NewsLook.com
Lost Brain Cells To Blame For Sleep Problems Among Seniors

Lost Brain Cells To Blame For Sleep Problems Among Seniors

Newsy (Aug. 21, 2014) According to a new study, elderly people might have trouble sleeping because of the loss of a certain group of neurons in the brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins