Featured Research

from universities, journals, and other organizations

Crystals On Meteorite Reveal Clues To Early Solar System Evolution

Date:
August 4, 2007
Source:
University Of Toronto
Summary:
A new study has uncovered tiny zircon crystals in a meteorite originating from Vesta (a large asteroid between Mars and Jupiter) shedding light on the formation of planetesimals, small astronomical objects that form the basis of planets. To date, studying zircons in eucrites -- meteorites formed by volcanic activity -- has been difficult due to impact- induced fracturing and their small size, typically less than five microns.

To date, studying zircons in eucrites – meteorites formed by volcanic activity – has been difficult due to impact- induced fracturing and their small size, typically less than five microns. Most eucrites are formed within the asteroid belt that orbits Mars and Jupiter, a heap of astronomical debris from the earliest epoch of the solar system. In a study published in the recent issue of Science, researchers collected samples from eucrites found in Antarctica believed to have originated from Vesta. The researchers used new technology to reveal that asteroid’s boiling rock turned solid and crystallized within less than 10 million years of solar system formation.

samples from eucrites found in Antarctica believed to have originated from Vesta. The researchers used new technology to reveal that asteroid’s boiling rock turned solid and crystallized within less than 10 million years of solar system formation.

“Until now we have not been able to determine this time frame unambiguously,” says lead author Professor Gopalan Srinivasan of U of T’s Department of Geology. “By pinpointing the timeframe we’re able to add one more piece to the geological and historical map of our solar system.”

Scientists believe that at some point Vesta was quickly heated and then melted into a metallic and silicate core, a similar process that happened on the Earth. The energy for this process was released from the radioactive decay that was present in abundance in the early solar system. What has been unclear is when this process occurred.

Equipped with the ion microprobe at the Swedish National Museum, Srinivasan and colleagues from four institutions set to analyze the zircons in the eucrites, which formed when a radioactive element – hafnium-182 – was still alive. Radioactive hafnium-182 decays to another element – tungsten-182 – with a nearly 9 million year half-life span. By studying zircons for their 182 tungsten abundance, the researchers were able to determine the crystallization ages of eucrites occurred within that timeframe.

“Zircons on Earth and in space have basically the same characteristics,” Srinivasan says. “They occur when boiling rock crystallizes and turns into solid form primary crystallization products or they could be secondary products caused by heating from impacts. We know Vesta became inactive within first 10 million years of solar system formation which is nearly 4.5 billion years ago. This provides a snapshot of the early solar system and clues to the early evolution of Earth’s mantle and core.”


Story Source:

The above story is based on materials provided by University Of Toronto. Note: Materials may be edited for content and length.


Cite This Page:

University Of Toronto. "Crystals On Meteorite Reveal Clues To Early Solar System Evolution." ScienceDaily. ScienceDaily, 4 August 2007. <www.sciencedaily.com/releases/2007/08/070803140904.htm>.
University Of Toronto. (2007, August 4). Crystals On Meteorite Reveal Clues To Early Solar System Evolution. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2007/08/070803140904.htm
University Of Toronto. "Crystals On Meteorite Reveal Clues To Early Solar System Evolution." ScienceDaily. www.sciencedaily.com/releases/2007/08/070803140904.htm (accessed July 25, 2014).

Share This




More Space & Time News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

This Week @ NASA, July 25, 2014

This Week @ NASA, July 25, 2014

NASA (July 25, 2014) Apollo 11 celebration, Next Giant Leap anticipation, ISS astronauts appear in the House and more... Video provided by NASA
Powered by NewsLook.com
Space to Ground: Coming and Going

Space to Ground: Coming and Going

NASA (July 25, 2014) One station cargo ship leaves, another arrives, aquatic research and commercial spinoffs. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com
How A Solar Flare Could Have Wrecked Earth's Electronics

How A Solar Flare Could Have Wrecked Earth's Electronics

Newsy (July 25, 2014) Researchers say if Earth had been a week earlier in its orbit around the sun, it would have taken a direct hit from a 2012 coronal mass ejection. Video provided by Newsy
Powered by NewsLook.com
Raw: ISS Cargo Ship Launches in Kazakhstan

Raw: ISS Cargo Ship Launches in Kazakhstan

AP (July 23, 2014) The Progress 56 cargo ship launched from the Baikonur Cosmodrome in Kazakhstan Wednesday. NASA says it will deliver cargo and crew supplies to the International Space Station. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins