Featured Research

from universities, journals, and other organizations

New Computer Architecture Aids Emergency Response

Date:
November 2, 2007
Source:
Princeton University, Engineering School
Summary:
Researchers have invented a computer architecture that enables the secure transmission of crucial rescue information to first responders during events such as natural disasters, fires or terrorist attacks. Electrical engineering professor Ruby Lee said the new architecture allows for what she describes as "transient trust."

Princeton researchers have invented a computer architecture that enables the secure transmission of crucial rescue information to first responders during events such as natural disasters, fires or terrorist attacks.

Electrical engineering professor Ruby Lee said the new architecture allows for what she describes as "transient trust" -- the ability to transmit sensitive information to parties on an as-needed basis so that it cannot be intercepted by others and so that access stops as soon as the recipient no longer has a legitimate need for it.

Data provided on a transient-trust basis might include floor plans of a building, medical information about occupants, or satellite maps of a given area.

The new SP (Secret Protection) computer architecture relies on two new elements that are embedded in the hardware of an electronic device: a "device root key" and a "storage root hash."

A trusted authority such as a municipal Fire Department would initialize a device -- for example, a PDA used by a firefighter -- with these features so that during an emergency a firefighter could be given access to relevant floor plans, security codes or other essential information. Once the emergency was over, the access to this sensitive information would end.

This new research emerged from the Princeton Architecture Lab for Multimedia and Security (PALMS) led by Lee, the Forrest G. Hamrick Professor of Engineering. The lab's major focus is "clean-slate" computer architecture design. As chief computer architect at Hewlett-Packard, Lee was a key figure in a revolution in computer architecture that swept through the industry in the 1980s. Since coming to Princeton, Lee has been working to revolutionize computer architecture again.

"Computers were not originally designed with security as a goal," said Lee. "I'm trying to rethink the design of computers so they can be trustworthy while at the same time retain all their original design goals, such as high performance, low cost and energy efficiency."

Lee aims to build fundamental security features directly into the hardware of a device, whether it is a personal computer, cell phone or PDA. Her researchers are working to build "trust anchors" into computer hardware to which different software can be tethered, to provide important security coverage.

Lee said that many researchers do not think it is possible to build security features into computer hardware without slowing the computer down or causing it to consume lots of power. However, research done by her lab demonstrates that this is not the case.

"Our research shows that these hardware 'roots of trust' are actually quite deployable on consumer devices like desktop computers or PDAs, and also in sensor networks and larger servers," said Lee. The work is part of the SecureCore multi-university research project, funded by the NSF Cybertrust program and DARPA, which aims to integrate essential security into the hardware, software and networking at the core of commodity computing and communications devices.

In addition to trust anchors for software, Lee is also researching hardware "safety nets" to defend against software vulnerabilities that remote attackers exploit to gain entry into a computer. The ultimate goal is to inoculate individual computers and electronic devices such as cell phones against threats like viruses, worms and bots so that they cannot infect, or be used to attack, other machines.

A paper describing the new architecture by Lee and her graduate student Jeffrey Dwoskin will be presented Wed., Oct. 31, at the ACM Computer and Communications Security conference in Alexandria, Va. [1].

Lee's students study all aspects of building more secure microprocessors and hardware. In June, at the IEEE Symposium on Computer Arithmetic, Lee and Yedidya Hilewitz, a graduate student at Princeton, published a paper which proposes a revolutionary design of a fundamental functional unit of microprocessors that greatly expands a computer's ability to perform "advanced bit manipulation operations," which are very useful for fast cryptography and cryptanalysis, as well as for many other applications [2].

Lee is also studying computer architecture that prevents leakage of information through covert channels and side channels. At the International Symposium on Computer Architecture in June, Zhenghong Wang, one of Lee's graduate students, presented a paper describing a hardware approach to preventing so-called "software side-channel attacks" during which attackers exploit the cache memories that are shared between computer programs to leak secret cryptographic keys [3].

In September, at the Cryptographic Hardware and Embedded Systems conference, Lee's researchers, Reouven Elbaz and David Champagne, presented a hardware memory integrity solution to rebuff memory replay attacks, where attackers try to trick a computer into accepting material as still legitimate even though it has already been officially deleted. [4].

Lee's research has been funded by DARPA, the National Science Foundation, the Department of Defense, Intel and other companies.

Paper citations:

[1] Jeffrey Dwoskin and Ruby Lee, "Hardware-rooted Trust for Secure Key Management and Transient Trust," to appear at the ACM Computer and Communications Security (CCS '07), Oct 29-Nov 2, 2007.

[2] Yedidya Hilewitz and Ruby B. Lee, "Performing Advanced Bit Manipulations Efficiently in General-Purpose Processors", IEEE Symposium on Computer Arithmetic (ARITH-18), June, 2007.

[3]Zhenghong Wang and Ruby B. Lee, "New Cache Designs for Thwarting Software Cache-based Side Channel Attacks", International Symposium on Computer Architecture (ISCA'07), June 2007.

[4] Reouven Elbaz, David Champagne, Ruby B. Lee, Lionel Torres, Gilles Sassatelli and Pierre Guillemin, "TEC-Tree: A Low Cost, Parallelizable Tree for Efficient Defense against Memory Replay Attacks", Cryptographic Hardware and Embedded Systems (CHES 2007), September 2007.


Story Source:

The above story is based on materials provided by Princeton University, Engineering School. Note: Materials may be edited for content and length.


Cite This Page:

Princeton University, Engineering School. "New Computer Architecture Aids Emergency Response." ScienceDaily. ScienceDaily, 2 November 2007. <www.sciencedaily.com/releases/2007/10/071031111146.htm>.
Princeton University, Engineering School. (2007, November 2). New Computer Architecture Aids Emergency Response. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2007/10/071031111146.htm
Princeton University, Engineering School. "New Computer Architecture Aids Emergency Response." ScienceDaily. www.sciencedaily.com/releases/2007/10/071031111146.htm (accessed October 22, 2014).

Share This



More Computers & Math News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) — If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) — Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) — Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins