Featured Research

from universities, journals, and other organizations

Venus Flytrap Inspired Lenses May Lead To New Adhesives, Optics, Coatings

Date:
November 15, 2007
Source:
University of Massachusetts Amherst
Summary:
Imagine paint that adheres to a surface, but releases on command or road signs that change their reflectivity with changing weather conditions. These are two potential uses of a novel, responsive material. Inspired by the way a Venus flytrap captures its pray, scientists created a polymer surface covered with small holes capped by thin lenses of the same material. The lenses can snap between convex and concave when triggered.

Inspired by the way a Venus flytrap captures its prey, researchers created a polymer surface covered with small holes capped by thin lenses of the same material. The lenses can snap between convex and concave when triggered. Venus flytrap leaflets work in a similar way.
Credit: iStockphoto/Achim Prill

Imagine paint that adheres to a surface, but releases on command or road signs that change their reflectivity with changing weather conditions. These are two potential uses of a novel, responsive material designed by researchers in the University of Massachusetts Amherst polymer science and engineering department.

Inspired by the way a Venus flytrap captures its prey, Alfred Crosby and his doctoral candidate Douglas Holmes created a polymer surface covered with small holes capped by thin lenses of the same material. The lenses can snap between convex and concave when triggered.

Venus flytrap leaflets work in a similar way. Through a combination of geometry and materials selection, the flytrap leaflets snap from concave to convex when an object triggers their hairs. The key to the flytrap’s ability to capture prey, and a key feature in Crosby and Holmes’ material, is the speed and sensitivity that accompany a “snap” transition. For the Venus flytrap, the transition occurs in roughly 100 milliseconds, and the “snapping surfaces” can snap at least as fast as 30 milliseconds. Even more important is the fact that this speed can be easily adapted for faster or slower transitions depending on the final use.

This “snap” transition changes the surface of the material from a series of mounds to a series of depressions, a strategy that has great potential for creating release-on-command coatings, “smart” adhesives, adaptable optical devices or surfaces with responsive reflective properties.

“This material’s design could allow for the removal of superglues, wallpaper and paints without toxic solvents, which would be an advantage for the environment,” says Crosby.

The connection to controlling adhesion with the responsive “snapping” surfaces is fueled by another project in Crosby’s research group that is focused on understanding and mimicking the gecko, a small lizard with pattern-covered toes that provide enhanced adhesion and release properties. The “snapping surfaces,” which are really Venus flytrap-gecko hybrids, can be turned into smart adhesives by covering the lenses with hairs that adhere in the convex position and release when the lenses are concave.

“This novel surface has many advantages over existing shape-memory polymers,” says Crosby. “The snap-through transition is caused by an elastic instability; therefore it requires very small amounts of energy to initiate large changes in geometry. The transition can also be limited to one lens or the entire sheet.”

Currently Crosby and Holmes have demonstrated mechanical pressure, swelling and surface chemistry as triggers for the “snap” transition. “Using different materials may lead to surfaces that transition in response to heat, light and voltage, and changing the size scale permits use in electronics and nanodevices,” says Crosby. “There is no physical reason that we can’t go down to the nanometer scale. That is what we are currently researching.”

The research was published online in the journal Advanced Materials.


Story Source:

The above story is based on materials provided by University of Massachusetts Amherst. Note: Materials may be edited for content and length.


Cite This Page:

University of Massachusetts Amherst. "Venus Flytrap Inspired Lenses May Lead To New Adhesives, Optics, Coatings." ScienceDaily. ScienceDaily, 15 November 2007. <www.sciencedaily.com/releases/2007/11/071109212442.htm>.
University of Massachusetts Amherst. (2007, November 15). Venus Flytrap Inspired Lenses May Lead To New Adhesives, Optics, Coatings. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2007/11/071109212442.htm
University of Massachusetts Amherst. "Venus Flytrap Inspired Lenses May Lead To New Adhesives, Optics, Coatings." ScienceDaily. www.sciencedaily.com/releases/2007/11/071109212442.htm (accessed April 18, 2014).

Share This



More Matter & Energy News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins