Featured Research

from universities, journals, and other organizations

Ultrafast Optical Shutter Is Switched Entirely By Laser Light

Date:
December 7, 2007
Source:
Vanderbilt University
Summary:
It's a rare case of all light and no heat: A new study reports that a laser can be used to switch a film of vanadium dioxide back and forth between reflective and transparent states without heating or cooling it.

Carl Kόbler stands behind his 12 femtosecond ultrabroadband herahertz laser setup at Konstanz University with summer student Vanessa Knittel, barely visible on the left.
Credit: Courtesy of Alfred Leitenstorfer

It's a rare case of all light and no heat: A new study reports that a laser can be used to switch a film of vanadium dioxide back and forth between reflective and transparent states without heating or cooling it.

Related Articles


It is one of the first cases that scientists have found where light can directly produce such a physical transition without changing the material's temperature.

It is also among the most recent examples of "coherent control," the use of coherent radiation like laser light to affect the behavior of atomic, molecular or electronic systems. The technique has been used to control photosynthesis and is being used in efforts to create quantum computers and other novel electronic and optical devices. The new discovery opens the possibility of a new generation of ultra-fast optical switches for communications.

The study, which was published in the Sept. 14 issue of Physical Review Letters, was conducted by a team of physicists from Vanderbilt University and the University of Konstanz in Germany headed by Richard Haglund of Vanderbilt and Alfred Leitenstorfer from Konstanz.

Vanadium dioxide's uncanny ability to switch back and forth between transparent and reflective states is well known. At temperatures below 154 degrees Fahrenheit, vanadium dioxide film is a transparent semiconductor. Heat it to just a few degrees higher, however, and it becomes a reflective metal. The semiconducting and metallic states actually have different crystalline structures. Among a number of possible applications, people have experimented with using vanadium dioxide film as the active ingredient in "thermochromic windows" that can block sunlight when the temperature soars and as microscopic thermometers that could be injected into the body.

In 2005, a research collaboration teaming Haglund and Renι Lopez (now at the University of North Carolina, Chapel Hill) with Andrea Cavalleri and Matteo Rini from the Lawrence Berkeley National Laboratory tested the vanadium dioxide transition with an ultra-fast laser that produced 120-femtosecond pulses. (A femtosecond is a quadrillionth of a second. At this time scale, an eye blink lasts almost forever. In the three-tenths of a second it takes to blink an eye, light can travel 56,000 miles. By contrast, it takes 100 femtoseconds to cross the width of a human hair.)

Using this laser, the researchers determined that VO2 film can flip from transparent to reflective in a remarkably short time: less than 100 femtoseconds. This was the fastest phase transition ever measured. However, the mechanism that allowed it to make such rapid transitions remained a matter of scientific debate.

Now, in a two-year collaboration with the Leitenstorfer group, the Vanderbilt researchers have used a laser with even shorter, 12-femtosecond pulses to "strobe" the vanadium dioxide transition with the fastest pulses ever used for this purpose. The result? "This transition takes place even faster than we thought possible," says Haglund. "It can shift from transparent to reflective and back to transparent again in less than 100 femtoseconds, making the transition more than twice as fast as we had thought."

In order to identify the driving mechanism for the rapid change of state in vanadium dioxide, Leitenstorfer's graduate student Carl Kόbler developed a method that converts the near-infrared photons produced by their 12-femtosecond pulse laser into a broad spectrum of infrared wavelengths that bracket a well-known vibration in the vanadium dioxide crystal lattice. At the same time, the Vanderbilt researchers figured out how to grow VO2 film on a diamond substrate that is transparent to infrared light.

This allowed the researchers to show that the energy in the laser beam goes directly into the crystal lattice of the VO2, driving it to shift from its transparent, crystalline form to its more compact and symmetric metallic configuration.

The laser light doesn't produce this shift by heating the VO2 lattice until it melts, as the conventional wisdom about phase transitions suggested. Instead, the researchers found that the stream of photons directly drive the oxygen atoms from one position to another by a process that is rather like pumping a swing in time with its natural frequency.

"People have believed for a long time that what happened in this phase transition was that the electrons get excited and then, somehow or another, the crystal structure changes," says Haglund. "But it turns out that the change in crystal structure is associated with this coherent molecular vibration."

Such a rapid transition is only possible because the difference between the metallic and semiconductor geometries is extremely small. "You can think of the movement that results as a breathing motion of the oxygen 'cage' that surrounds the vanadium ions," says Haglund. "That makes it possible for the structure to change from the semiconducting to the metallic states. It's a little like taking a deep breath to get into last summer's clothes."

This mechanism also allows the researchers to trigger the transition without changing the film's temperature. "We can focus the laser beam on a transparent vanadium dioxide film and create a small reflective spot. We can switch it on and off in less than 100 femtoseconds provided we haven't dumped so much energy into the film that we've heated it up. However, the more laser energy you dump in the VO2, the longer it takes to return to the semiconducting state," Haglund says.

Henri Ehrke and Rupert Huber from the University of Konstanz, and Andrej Halabica from Vanderbilt University also collaborated in the study, which was funded by the National Science Foundation and the Alexander von Humboldt Foundation.


Story Source:

The above story is based on materials provided by Vanderbilt University. Note: Materials may be edited for content and length.


Cite This Page:

Vanderbilt University. "Ultrafast Optical Shutter Is Switched Entirely By Laser Light." ScienceDaily. ScienceDaily, 7 December 2007. <www.sciencedaily.com/releases/2007/12/071206155526.htm>.
Vanderbilt University. (2007, December 7). Ultrafast Optical Shutter Is Switched Entirely By Laser Light. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2007/12/071206155526.htm
Vanderbilt University. "Ultrafast Optical Shutter Is Switched Entirely By Laser Light." ScienceDaily. www.sciencedaily.com/releases/2007/12/071206155526.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) — The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins