Featured Research

from universities, journals, and other organizations

New Image-Guided Radiotherapy System Benefits High-Risk Patients

Date:
December 10, 2007
Source:
Stony Brook University Medical Center
Summary:
A new radiotherapy system that combines high-tech imaging with precision tumor-targeting capability is helping cancer specialists treat patients. Those with medically inoperable tumors, at high-risk for surgery, or who do not want surgical treatment may benefit most from the ExacTrac® X-ray 6D System for image-guided radiotherapy. The system adds to patient options for stereotactic body radiation therapy (SBRT), a technique that features high radiation doses with pinpoint precision to tumors.

The ExacTrac® X-ray 6D System for image-guided radiotherapy uses multiple beams to converge on the same tumor target for precision therapy.
Credit: Image courtesy of Stony Brook University Medical Center

A new radiotherapy system that combines high-tech imaging with precision tumor-targeting capability is helping cancer specialists at Stony Brook University Medical Center treat patients. Those with medically inoperable tumors, at high-risk for surgery, or who do not want surgical treatment may benefit most from the ExacTrac® X-ray 6D System for image-guided radiotherapy. The system adds to patient options for stereotactic body radiation therapy (SBRT), a technique that features high radiation doses with pinpoint precision to tumors.

Related Articles


Denis Keefe, 63, of Patchogue, N.Y., is a lung cancer patient who choose the image-guided radiotherapy system because it is the least invasive method available to treat his disease. Keefe was among the first patients to be treated with the system. The option was a good one for Keefe because his lung tumor was small and surgery remained risky because of his overall condition as a congestive heart failure patient.

“Other than mild redness, I experienced no side effects from the treatment and feel very good,” says Keefe, whose tumor has shrunk since the treatment. “I was comfortable during the procedure and only needed to go for three treatment sessions.”

Other patients have experienced few or no side effects when treated for lung cancer or other forms of disease with this radiotherapy system. The power and precision of the system also allows for short therapeutic duration. Treatments take one-to-two weeks to complete and require only three or four doses. Conventional beam therapy often lasts many weeks and many doses.

“We have had substantial success in treating patients with tumors of the lung, brain, spine, head and neck, and prostate with the ExacTrac system,” says Allen G. Meek, M.D., Chair of the Department of Radiation Oncology, indicating that the system has become an integral part of the department’s therapeutic options after several months in operation.

“ExacTrac enables us to deliver treatment to some previously irradiated sites without damaging critical structures like the spinal cord,” explains Dr. Meek. “This greatly improves our ability to treat some inoperable tumors and cancers that spread from primary sites.”

“Scarring is considerably reduced with this new modality because it delivers top-of-the-line aiming capability using low dose beams from many directions that converge on the same target to deliver a high dose,” says Thomas Bilfinger, M.D., Professor of Surgery and Co-Director of the Lung Cancer Evaluation Center. “Less scarring leads to fewer losses of functioning tissue over time, which can be particularly beneficial for lung cancer patients.”

“The imaging component is critical to the process,” adds Bong S. Kim, M.D., Assistant Professor of Clinical Radiation Oncology. “We can position the patient within two millimeters precision, which maximizes radiation treatment directly to the tumor.”

The treatment procedure with the ExacTrac System consists of four major steps: 1) An automated and image-guided patient positioning system, based on the patient’s form and location of tumor, is used for the initial patient set-up; 2) high-resolution X-rays pinpoint internal tumor sites, verifying the location across six dimensions and calculating key reference points for delivery of radiotherapy; 3) a remote control system corrects any initial patient set-up errors; and 4) the system tracks any patient movement that may affect treatment during the entire session.

For SBRT to be successful, optimal patient immobilization is required. The ExacTrac System uses the most advanced technology available for ensuring that the patient is positioned for treatment as accurately as possible. The computerized BodyFix® System guides the overall system by way of a non-invasive vacuum activated immobilization and fixation unit. This device limits movement caused by patient breathing, as well as tumor movement.


Story Source:

The above story is based on materials provided by Stony Brook University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Stony Brook University Medical Center. "New Image-Guided Radiotherapy System Benefits High-Risk Patients." ScienceDaily. ScienceDaily, 10 December 2007. <www.sciencedaily.com/releases/2007/12/071208143543.htm>.
Stony Brook University Medical Center. (2007, December 10). New Image-Guided Radiotherapy System Benefits High-Risk Patients. ScienceDaily. Retrieved March 29, 2015 from www.sciencedaily.com/releases/2007/12/071208143543.htm
Stony Brook University Medical Center. "New Image-Guided Radiotherapy System Benefits High-Risk Patients." ScienceDaily. www.sciencedaily.com/releases/2007/12/071208143543.htm (accessed March 29, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, March 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
WH Plan to Fight Antibiotic-Resistant Germs

WH Plan to Fight Antibiotic-Resistant Germs

AP (Mar. 27, 2015) — The White House on Friday announced a five-year plan to fight the threat posed by antibiotic-resistant bacteria amid fears that once-treatable germs could become deadly. (March 27) Video provided by AP
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) — In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins