Featured Research

from universities, journals, and other organizations

How Mars Could Have Been Warm And Wet But Limestone Free

Date:
December 27, 2007
Source:
Massachusetts Institute of Technology
Summary:
Planetary scientists have puzzled for years over an apparent contradiction on Mars. Abundant evidence points to an early warm, wet climate on the red planet, but there's no sign of the widespread carbonate rocks, such as limestone, that should have formed in such a climate. A new analysis suggests that on Mars, sulfur went through a whole cycle comparable to the well-known carbon cycle on Earth.

Rocks are strewn across the broad, flat Gusev crater floor in this color picture from NASA's Spirit rover. Abundant evidence points to an early warm, wet climate on the red planet, but there's no sign of the widespread carbonate rocks, such as limestone, that should have formed in such a climate. A new analysis suggests that on Mars, sulfur went through a whole cycle through the atmosphere comparable to the well-known carbon cycle on Earth.
Credit: Mars Exploration Rover Mission, JPL, NASA

Planetary scientists have puzzled for years over an apparent contradiction on Mars. Abundant evidence points to an early warm, wet climate on the red planet, but there's no sign of the widespread carbonate rocks, such as limestone, that should have formed in such a climate.

Now, a detailed analysis in the Dec. 21 issue of Science by MIT's Maria T. Zuber and Itay Halevy and Daniel P. Schrag of Harvard University provides a possible answer to the mystery. In addition to being warmed by a greenhouse effect caused by carbon dioxide in the atmosphere, as on Earth, the early Mars may have had the greenhouse gas sulfur dioxide in its atmosphere. That would have interfered with the formation of carbonates, explaining their absence today.

It would also explain the discovery by the twin Mars rovers, Spirit and Opportunity, of sulfur-rich minerals that apparently formed in bodies of water in that early Martian environment. And it may provide clues about the Earth's history as well.

The challenge was to interpret the planet's history, based on the data gathered by the Mars rovers--and especially Opportunity's discovery of sulfate minerals--from just tiny fractions of the surface, says Zuber, who is head of MIT's Department of Earth, Atmospheric and Planetary Sciences and the E.A. Griswold Professor of Geophysics. "How do you take very detailed measurements of chemical composition at one tiny place on Mars," she says, "and put it into the context of the broad evolution of the planet?" The breakthrough, she said, was when she and her colleagues realized "we'd been after the wrong molecule."

After several years of exploring the role of carbon dioxide and the carbon cycle, she said, they realized "maybe the key is sulfur dioxide, not carbon dioxide."

It was Opportunity's discovery of the mineral jarosite, which only forms in highly acidic water, that set them thinking about how that acidic environment could have come about. Sulfur provided the answer.

The new analysis suggests that on Mars, sulfur went through a whole cycle through the atmosphere, bodies of water on the surface, and burial in the soil and crust, comparable to the well-known carbon cycle on Earth. Through most of Earth's history, carbon dioxide has been released in volcanic eruptions, then absorbed into seawater, where it fosters the formation of calcium carbonate (limestone), which gets buried in ocean sediments.

Instead, the researchers propose, on Mars there may have been an analogous sulfur cycle. Much evidence suggests Mars may once have had an ocean that covered about a third of the planet, in its Northern hemisphere. Sulfur dioxide (SO2) dissolves easily in water, so after being spewed into the atmosphere by the giant volcanoes of Mars' Tharsis bulge, much of it would have ended up in the water, where it inhibited the formation of carbonate minerals but led to the formation of silicates and sulfites, such as calcium sulfite.

These minerals degrade relatively rapidly, so they would not be expected on the surface of Mars today. But they also allow formation of clays, which have been found on Mars, and which added to the puzzle since clays are usually associated with the same conditions that produce carbonates.

The new picture of a sulfur cycle helps to solve another mystery, which is how the early Mars could have been warm enough to sustain liquid water on its surface. A carbon dioxide atmosphere produces some greenhouse warming, but sulfur dioxide is a much more powerful greenhouse gas. Just 10 parts per million of sulfur dioxide in the mostly carbon dioxide air would double the amount of warming and make it easier for liquid water to be stable.

The analysis may also tell us something about our own planet's past. The early Earth's environment could well have been similar to that on Mars, but most traces of that era have been erased by Earth's very dynamic climate and tectonics. "This might have been a phase that Earth went through" in its early years, Zuber says. "It's fascinating to think about whether this process may have played a role" in the evolution of the early Earth.

The work was funded by NASA, a Radcliffe fellowship, the George Merck Fund and a Harvard graduate fellowship.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "How Mars Could Have Been Warm And Wet But Limestone Free." ScienceDaily. ScienceDaily, 27 December 2007. <www.sciencedaily.com/releases/2007/12/071221130045.htm>.
Massachusetts Institute of Technology. (2007, December 27). How Mars Could Have Been Warm And Wet But Limestone Free. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2007/12/071221130045.htm
Massachusetts Institute of Technology. "How Mars Could Have Been Warm And Wet But Limestone Free." ScienceDaily. www.sciencedaily.com/releases/2007/12/071221130045.htm (accessed August 27, 2014).

Share This




More Space & Time News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

SpaceX’s Falcon 9 Rocket Explodes After Liftoff

SpaceX’s Falcon 9 Rocket Explodes After Liftoff

Newsy (Aug. 23, 2014) The private spaceflight company says it is preparing a thorough investigation into Friday's mishap. Video provided by Newsy
Powered by NewsLook.com
Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Newsy (Aug. 21, 2014) Russian cosmonauts say they've found evidence of sea plankton on the International Space Station's windows. NASA is a little more skeptical. Video provided by Newsy
Powered by NewsLook.com
Space to Ground: Hello Georges

Space to Ground: Hello Georges

NASA (Aug. 18, 2014) Europe's ATV-5 delivers new science and the crew tests smart SPHERES. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins