Featured Research

from universities, journals, and other organizations

Brain Imaging Shows If You Are Thinking Of Familiar Object

Date:
January 4, 2008
Source:
Carnegie Mellon University
Summary:
Researchers, using machine learning and brain imaging, have found a way to identify where people's thoughts and perceptions of familiar objects originate in the brain by identifying the patterns of brain activity associated with the objects. Scientists were also able to accurately determine which of the 10 drawings a participant was viewing based on their characteristic whole-brain neural activation patterns.

Locations of the discriminating voxels in object exemplar classification for one participant.
Credit: Image courtesy of Carnegie Mellon University

A team of Carnegie Mellon University computer scientists and cognitive neuroscientists, combining methods of machine learning and brain imaging, have found a way to identify where people's thoughts and perceptions of familiar objects originate in the brain by identifying the patterns of brain activity associated with the objects. This new method was developed over two years under the leadership of neuroscientist Professor Marcel Just and Computer Science Professor Tom M. Mitchell.

A dozen study participants enveloped in an MRI scanner were shown line drawings of 10 different objects -- five tools and five dwellings --one at a time and asked to think about their properties. Just and Mitchell's method was able to accurately determine which of the 10 drawings a participant was viewing based on their characteristic whole-brain neural activation patterns. To make the task more challenging for themselves, the researchers excluded information in the brain's visual cortex, where raw visual information is available, and focused more on the "thinking" parts of the brain.

The scientists found that the activation pattern evoked by an object wasn't located in just one place in the brain. For instance, thinking about a hammer activated many locations. How you swing a hammer activated the motor area, while what a hammer is used for, and the shape of a hammer activated other areas.

According to Just and Mitchell, this is the first study to report the ability to identify the thought process associated with a single object. While earlier work showed it is possible to distinguish broad categories of objects such as "tools" versus "buildings," this new research shows that it is possible to distinguish between items with very similar meanings, like two different tools. The machine-learning method involves training a computer algorithm (a set of mathematical rules) to extract the patterns from a participant's brain activation, using data collected in one part of the study, and then testing the algorithm on data in an independent part of the same study. In this way, the algorithm is never previously exposed to the patterns on which it is tested.

Another important question addressed by the study was whether different brains exhibit the same or different activity patterns to encode these individual objects. To answer this question, the researchers tried identifying objects represented in one participant's brain after training their algorithms using data collected from other participants. They found that the algorithm was indeed able to identify a participant's thoughts based on the patterns extracted from the other participants.

"This part of the study establishes, as never before, that there is a commonality in how different people's brains represent the same object," said Mitchell, head of the Machine Learning Department in Carnegie Mellon's School of Computer Science and a pioneer in applying machine learning methods to the study of brain activity. "There has always been a philosophical conundrum as to whether one person's perception of the color blue is the same as another person's. Now we see that there is a great deal of commonality across different people's brain activity corresponding to familiar tools and dwellings."

"This first step using computer algorithms to identify thoughts of individual objects from brain activity can open new scientific paths, and eventually roads and highways," added Svetlana Shinkareva, an assistant professor of psychology at the University of South Carolina who is the study's lead author. "We hope to progress to identifying the thoughts associated not just with pictures, but also with words, and eventually sentences."

Just, who directs the Center for Cognitive Brain Imaging at Carnegie Mellon, noted that one application the team is excited about is comparing the activation patterns of people with neurological disorders, such as autism. "We are looking forward to determining how people with autism neurally represent social concepts such as friend and happy," he said. Just also is developing a brain-based theory of autism. "People with autism perceive others in a distinctive way that has been difficult to characterize," he explained. "This machine learning approach offers a way to discover that characterization."

This research was published in an article in the Jan. 2 issue of PLoS One.

The project applying machine learning to brain patterns was funded by the W.M. Keck Foundation and the National Science Foundation.


Story Source:

The above story is based on materials provided by Carnegie Mellon University. Note: Materials may be edited for content and length.


Cite This Page:

Carnegie Mellon University. "Brain Imaging Shows If You Are Thinking Of Familiar Object." ScienceDaily. ScienceDaily, 4 January 2008. <www.sciencedaily.com/releases/2008/01/080102222813.htm>.
Carnegie Mellon University. (2008, January 4). Brain Imaging Shows If You Are Thinking Of Familiar Object. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2008/01/080102222813.htm
Carnegie Mellon University. "Brain Imaging Shows If You Are Thinking Of Familiar Object." ScienceDaily. www.sciencedaily.com/releases/2008/01/080102222813.htm (accessed September 16, 2014).

Share This



More Computers & Math News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

FBI Finishes $1 Billion Facial Recognition System

FBI Finishes $1 Billion Facial Recognition System

Newsy (Sep. 15, 2014) The FBI announced it plans to make its Next Generation Identification System available to law enforcement, but some privacy advocates are worried. Video provided by Newsy
Powered by NewsLook.com
A+ for Apple iPhone Pre-Sales

A+ for Apple iPhone Pre-Sales

Reuters - Business Video Online (Sep. 15, 2014) Apple says it received a record 4 million first-day pre-orders for its new iPhone 6 and iPhone 6 Plus, pushing delivery dates into October. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com
Microsoft to Buy 'Minecraft' Maker for $2.5B

Microsoft to Buy 'Minecraft' Maker for $2.5B

AP (Sep. 15, 2014) Microsoft will acquire the maker of the long-running hit game Minecraft for $2.5 billion as the company continues to invest in its Xbox gaming platform and looks to grab attention on mobile phones. (Sept. 15) Video provided by AP
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins