Featured Research

from universities, journals, and other organizations

Vast Cloud Of Antimatter Traced To Binary Stars

Date:
January 10, 2008
Source:
NASA/Goddard Space Flight Center
Summary:
Astronomers may have solved one of the most vexing mysteries in our Milky Way: the origin of a giant cloud of antimatter surrounding the galactic center. Integral found that the cloud extends farther on the western side of the galactic center than it does on the eastern side. This imbalance matches the distribution of a population of binary star systems that contain black holes or neutron stars, strongly suggesting that these binaries are churning out at least half of the antimatter, and perhaps all of it.

This is an artist's impression of ESA's orbiting gamma-ray observatory, Integral.
Credit: ESA

Four years of observations from the European Space Agency’s Integral (INTErnational Gamma-Ray Astrophysics Laboratory) satellite may have cleared up one of the most vexing mysteries in our Milky Way: the origin of a giant cloud of antimatter surrounding the galactic center.

Integral found that the cloud extends farther on the western side of the galactic center than it does on the eastern side. This imbalance matches the distribution of a population of binary star systems that contain black holes or neutron stars, strongly suggesting that these binaries are churning out at least half of the antimatter, and perhaps all of it.

"The reported Integral detection of an asymmetry represents a significant step forward toward a solution of one of the major outstanding problems in high-energy astrophysics. I think I can hear a collective sigh of relief emanating from the community," says Marvin Leventhal, a University of Maryland professor emeritus and a pioneer in this field.

The cloud itself is roughly 10,000 light-years across, and generates the energy of about 10,000 Suns. The cloud shines brightly in gamma rays due to a reaction governed by Einstein’s famous equation E=mc^2. Negatively charged subatomic particles known as electrons collide with their antimatter counterparts, positively charged positrons. When electrons and positrons meet, they can annihilate one another and convert all of their mass into gamma rays with energies of 511,000 electron-volts (511 keV).

The antimatter cloud was discovered in the 1970s by gamma-ray detectors flown on balloons. Scientists have proposed a wide range of explanations for the origin of the antimatter, which is exceedingly rare in the cosmos. For years, many theories centered around radioactive elements produced in supernovae, prodigious stellar explosions. Others suggested that the positrons come from neutron stars, novae, or colliding stellar winds.

In recent years, some theorists championed the idea that particles of dark matter were annihilating one another, or with atomic matter, producing electrons and positrons that annihilate into 511-keV gamma rays. But other scientists remained skeptical, noting that the dark matter particles had to be significantly lighter than most theories predicted.

"The Integral results seem to rule out dark matter as the major source of the gamma rays," says the Nature paper’s second author Gerry Skinner, who currently works at NASA’s Goddard Space Flight Center in Greenbelt, Md., Skinner is a co-investigator of Integral’s SPI (SPectrometer for Integral) instrument, which made this discovery.

Integral found certain types of binary systems near the galactic center are also skewed to the west. These systems are known as hard low-mass X-ray binaries, since they light up in high-energy (hard) X-rays as gas from a low-mass star spirals into a companion black hole or neutron star. Because the two "pictures" of antimatter and hard low-mass X-ray binaries line up strongly suggests the binaries are producing significant amounts of positrons.

"Simple estimates suggest that about half and possibly all the antimatter is coming from X-ray binaries," says Georg Weidenspointer of the Max Planck Institute for Extraterrestrial Physics in Germany, lead author of the Nature paper.

While Integral’s discovery clears up one mystery, it raises a new one. Scientists don’t understand how low-mass X-ray binaries could produce enough positrons to explain the cloud, and they also don’t know how they escape from these systems. "We expected something unexpected, but we did not expect this," says Skinner. The antimatter is probably produced in a region near the neutron stars and black holes, where powerful magnetic fields launch jets of particles that rip through space at near-light speed.

NASA’s Gamma-ray Large Area Space Telescope (GLAST), scheduled to launch in 2008, may help clarify how objects such as black holes launch particle jets. Conceivably, it could even detect higher-energy gamma rays from heavier types of dark matter particles annihilating one another.

Launched in 2002, Integral is an international mission involving scientists and engineers from dozens of nations. NASA contributed scientists, hardware, and software for Integral, including part of the SPI instrument.

Full details of the research are published in the January 10 issue of Nature.


Story Source:

The above story is based on materials provided by NASA/Goddard Space Flight Center. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Goddard Space Flight Center. "Vast Cloud Of Antimatter Traced To Binary Stars." ScienceDaily. ScienceDaily, 10 January 2008. <www.sciencedaily.com/releases/2008/01/080109173722.htm>.
NASA/Goddard Space Flight Center. (2008, January 10). Vast Cloud Of Antimatter Traced To Binary Stars. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2008/01/080109173722.htm
NASA/Goddard Space Flight Center. "Vast Cloud Of Antimatter Traced To Binary Stars." ScienceDaily. www.sciencedaily.com/releases/2008/01/080109173722.htm (accessed July 30, 2014).

Share This




More Space & Time News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Newsy (July 27, 2014) The satellite is back under ground control after a tense few days, but with a gecko sex experiment on board, the media just couldn't help themselves. Video provided by Newsy
Powered by NewsLook.com
NASA EDGE: OCO-2 Launch

NASA EDGE: OCO-2 Launch

NASA (July 25, 2014) NASA EDGE webcasts live from Vandenberg AFB for the launch of the Oribiting Carbon Observatory-2 (OCO) launch. Video provided by NASA
Powered by NewsLook.com
This Week @ NASA, July 25, 2014

This Week @ NASA, July 25, 2014

NASA (July 25, 2014) Apollo 11 celebration, Next Giant Leap anticipation, ISS astronauts appear in the House and more... Video provided by NASA
Powered by NewsLook.com
Space to Ground: Coming and Going

Space to Ground: Coming and Going

NASA (July 25, 2014) One station cargo ship leaves, another arrives, aquatic research and commercial spinoffs. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins