Featured Research

from universities, journals, and other organizations

Learning About Brains From Computers, And Vice Versa

Date:
February 20, 2008
Source:
Massachusetts Institute of Technology
Summary:
For many years, Tomaso Poggio's lab at MIT ran two parallel lines of research. Some projects were aimed at understanding how the brain works, using complex computational models. Others were aimed at improving the abilities of computers to perform tasks that our brains do with ease. But recently Poggio has found that the two tasks have begun to overlap to such a degree, that it's now time to combine the two lines of research.

For many years, Tomaso Poggio's lab at MIT ran two parallel lines of research. Some projects were aimed at understanding how the brain works, using complex computational models. Others were aimed at improving the abilities of computers to perform tasks that our brains do with ease, such as making sense of complex visual images. But recently Poggio has found that the work has progressed so far, and the two tasks have begun to overlap to such a degree, that it's now time to combine the two lines of research.

The turning point came last year, when Poggio and his team were working on a computer model designed to figure out how the brain processes certain kinds of visual information. As a test of the vision theory they were developing, they tried using the model vision system to actually interpret a series of photographs. Although the model had not been developed for that purpose--it was just supposed to be a theoretical analysis of how certain pathways in the brain work--it turned out to be as good as, or even better than, the best existing computer-vision systems, and as good as humans, at rapidly recognizing certain kinds of complex scenes.

"This is the first time a model has been able to reproduce human behavior on that kind of task," says Poggio, the Eugene McDermott Professor in MIT's Department of Brain and Cognitive Sciences and Computer Science and Artificial Intelligence Laboratory.*

As a result, "My perspective changed in a dramatic way," Poggio says. "It meant that we may be closer to understanding how the visual cortex recognizes objects and scenes than I ever thought possible."

The experiments involved a task that is easy for people, but very hard for computer vision systems: recognizing whether or not there were any animals present in photos that ranged from relatively simple close-ups to complex landscapes with a great variety of detail. It's a very complex task, since "animals" can include anything from snakes to butterflies to cattle, against a background that might include distracting trees or buildings. People were shown the scenes for just a fraction of a second, a task that uses a particular part of the human visual cortex, known as the Ventral 1 pathway, to recognize what is seen.

The visual cortex is a large part of the brain's processing system, and one of the most complex, so reaching an understanding of how it works could be a significant step toward understanding how the whole brain works--one of the greatest problems in science today.

"Computational models are beginning to provide powerful new insights into the key problem of how the brain works," says Poggio, who is also co-director of the Center for Biological and Computational Learning and an investigator at the McGovern Institute for Brain Research at MIT.

Although the model Poggio and his team developed produces surprisingly good results, "we do not quite understand why the model works as well as it does," he says. They are now working on developing a comprehensive theory of vision that can account for these and other recent results from the lab.

"Our visual abilities are computationally amazing, and we are still far from imitating them with computers," Poggio says. But the new work shows that it may be time for researchers in artificial intelligence to start paying close attention to the latest developments in neuroscience, he says.

*Poggio described his lab's change in approach, and the research that led up to it, at the American Association for the Advancement of Science annual meeting in Boston, on Feb. 16.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "Learning About Brains From Computers, And Vice Versa." ScienceDaily. ScienceDaily, 20 February 2008. <www.sciencedaily.com/releases/2008/02/080215151207.htm>.
Massachusetts Institute of Technology. (2008, February 20). Learning About Brains From Computers, And Vice Versa. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2008/02/080215151207.htm
Massachusetts Institute of Technology. "Learning About Brains From Computers, And Vice Versa." ScienceDaily. www.sciencedaily.com/releases/2008/02/080215151207.htm (accessed July 23, 2014).

Share This




More Computers & Math News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com
The Reviews Are In For The Amazon Fire Phone

The Reviews Are In For The Amazon Fire Phone

Newsy (July 23, 2014) Amazon's first smartphone, the Fire Phone, is set to ship this week, and so far the reviews have been pretty mixed. Video provided by Newsy
Powered by NewsLook.com
Bigger Apple Phone, Bigger Orders

Bigger Apple Phone, Bigger Orders

Reuters - Business Video Online (July 22, 2014) Apple is asking suppliers to make 70 to 80 million units of its new larger screen iPhone, a lot more initially than its current model. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Amazon Fire Adds Spark to Smartphones

AP Review: Amazon Fire Adds Spark to Smartphones

AP (July 22, 2014) Amazon's new Fire phone uses tweaks to the Android operating system and some innovative features to set it apart from smartphones from the likes of Apple and Samsung. (July 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins