Featured Research

from universities, journals, and other organizations

Probing The Mysteries Of A Surprisingly Tough Hydrogel

Date:
March 14, 2008
Source:
National Institute of Standards and Technology
Summary:
Researchers are studying an unusually pliant yet strong synthetic cartilage replacement in hopes of providing arthritis victims with some relief. They report on a gel that, while having the pliancy of gelatin, won't break apart even when deformed over 1,000 percent.

Some 46 million people suffer from arthritis in the United States alone. The worst cases require painful surgeries to drill holes in and reinforce joints. Now researchers working at the National Institute of Standards and Technology (NIST) are studying an unusually pliant yet strong synthetic cartilage replacement in hopes of providing arthritis victims with some relief.

In a paper* presented at the March Meeting of the American Physical Society, NIST scientists and colleagues from Hokkaido University in Japan, reported on a gel that, while having the pliancy of gelatin, won't break apart even when deformed over 1,000 percent. By using NIST's neutron research facility to show how the molecules in the gel sustain such large deformations, the research team hopes to make it easier to design materials with even better mechanical properties.

Known as double-network hydrogels, the incredible strength of these new materials was a happy surprise when first discovered by researchers at Hokkaido in 2003. Most conventionally prepared hydrogels--materials that are 80 to 90 percent water held in a polymer network--easily break apart like a gelatin. The Japanese team serendipitously discovered that the addition of a second polymer to the gel made them so tough that they rivaled cartilage--tissue which can withstand the abuse of hundreds of pounds of pressure. A combination of a brittle hydrogel and a soft polymer solution leads to a surprisingly tough material.

Initial work using NIST's neutron scattering techniques to explore the structure of the gel found unexpected results. The two polymers** were attracted to each other--despite the fact that one polymer is negatively charged and the other neutral--and can withstand a certain force before they can be pulled apart. The total amount of force that can be endured by this polymer pair gets amplified enormously because there are many contacts along each long chain. Efficacy of stress transfer between the long added chain and gel network forms the cornerstone of the toughening mechanism in DN-gels.

The latest paper discusses a molecular-level toughening mechanism proposed based on neutron scattering measurements that gather, in detail, how the two polymers behave when the gel is deformed. Under deformation, these two polymers arrange themselves into an alternating, well-ordered, periodic pattern that is repeated approximately every 2 microns. This periodic structure is a hundred times larger than what is usually seen in molecules under deformation and its formation elegantly dissipates a large amount of deformation energy to stabilize the gel from crumbling apart.

Establishing the details of the molecular structure will allow for more precise design of the next generation of hydrogels that are tough and rigid at the same time. Real cartilage goes through a process of constant daily destruction and regeneration under everyday stresses; the researchers hope a good synthetic cartilage could endure year after year under the rigors of the body before needing to be replaced.

* W.L. Wu, V.R. Tirumala, T. Tominaga, S. Lee, P. Butler, E.K. Lin, J.P. Gong, H. Furukawa, A molecular model for toughening in double-network hydrogels. Presented at the March Meeting of the American Physical Society, March 11, 2008, New Orleans, La. Session: J25.00006.

** The materials is made by adding polyacrylamide (PAAm) to a gel based on poly(2-acrylamide,2-methyl,1-propanesulfonicacid) (PAMPS).


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology. "Probing The Mysteries Of A Surprisingly Tough Hydrogel." ScienceDaily. ScienceDaily, 14 March 2008. <www.sciencedaily.com/releases/2008/03/080311131854.htm>.
National Institute of Standards and Technology. (2008, March 14). Probing The Mysteries Of A Surprisingly Tough Hydrogel. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2008/03/080311131854.htm
National Institute of Standards and Technology. "Probing The Mysteries Of A Surprisingly Tough Hydrogel." ScienceDaily. www.sciencedaily.com/releases/2008/03/080311131854.htm (accessed August 27, 2014).

Share This




More Matter & Energy News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins