Featured Research

from universities, journals, and other organizations

Wireless Networks That Build Themselves

Date:
March 14, 2008
Source:
ICT Results
Summary:
From traffic lights to mobile phones, small computers are all around us. Enabling these 'embedded systems' to create wireless communications networks automatically will have profound effects in areas from emergency management to healthcare and traffic control. Networks of mobile sensors and other small electronic devices have huge potential. Applications include emergency management, security, helping vulnerable people to live independently, traffic control, warehouse management, and environmental monitoring.

From traffic lights to mobile phones, small computers are all around us. Enabling these ‘embedded systems’ to create wireless communications networks automatically will have profound effects in areas from emergency management to healthcare and traffic control.

Networks of mobile sensors and other small electronic devices have huge potential. Applications include emergency management, security, helping vulnerable people to live independently, traffic control, warehouse management, and environmental monitoring.

One scenario investigated by European researchers was a road-tunnel fire. With fixed communications destroyed and the tunnel full of smoke, emergency crews would normally struggle to locate the seat of the blaze and people trapped in the tunnel.

Wireless sensors could cut through the chaos by providing the incident control room with information on visibility, temperatures, and the locations of vehicles and people. Firefighters inside the tunnel could then receive maps and instructions through handheld terminals or helmet-mounted displays.

For this vision to become reality, mobile devices have to be capable of forming self-organising wireless networks spanning a wide variety of communications technologies. Developing software tools to make this possible was the task of the RUNES project.

Intelligent networking

‘Ad-hoc’ mobile networks are very different from the wireless computer networks in homes and offices, explains Dr Lesley Hanna, a consultant and dissemination manager for RUNES. Without a human administrator, an ad-hoc network must assemble itself from any devices that happen to be nearby, and adapt as devices move in and out of wireless range. And where office networks use powerful computers with separate routers, the building blocks of ad-hoc mobile networks are low-power devices that must do their own wireless routing, forwarding signals from other devices that would otherwise be out of radio range.

A typical network could contain tens or even hundreds of these ‘embedded systems’, ranging from handheld computers down to ‘motes’: tiny units each equipped with a sensor, a microcontroller and a radio that can be scattered around an area to be monitored. Other devices could be mounted at fixed points, carried by robots, or worn as ‘smart clothing’ or ‘body area networks’.

Wireless standards are not the issue: most mobile devices use common protocols, such as GSM, Wi-Fi, Bluetooth and ZigBee. The real challenge, suggests Hanna, is to build self-managing networks that work reliably on a large scale, with a variety of operating systems and low-power consumption.

Middleware and more

The EU-funded RUNES (Reconfigurable Ubiquitous Networked Embedded Systems) covered 21 partners in nine countries. Although RUNES was led by Ericsson, it had an academic bias, with twice as many universities as industrial partners, and most of the resulting software is publicly available.

RUNES set out to create middleware: software that bridges the gap between the operating systems used by the mobile sensor nodes, and high-level applications that make use of data from the sensors. RUNES middleware is modular and flexible, allowing programmers to create applications without having to know much about the detailed working of the network devices supplying the data. This also makes it easy to incorporate new kinds of mobile device, and to re-use applications.

Interoperability was a challenge, partly because embedded systems themselves are so varied. At one end of the spectrum are powerful environments, such as Java, while at the other are simple systems designed for wireless sensors. For devices with small memories, RUNES developed middleware modules that can be uploaded, used to carry out specific tasks, and then overwritten.

Project partners also worked on an operating system and a simulator. Contiki is an open-source operating system designed for networked, embedded systems with small amounts of memory. Simics, a simulator allowing large networks to be tested in ways that are impractical with real hardware, is commercially available from project partner Virtutech.

Taking the plunge

The tunnel fire scenario was valuable in demonstrating what networks of this kind can achieve. Using real sensor nodes, routers, gateways and robots developed during the project, a demonstration setup showed how, for instance, a robot router can manoeuvre itself to cover a gap in the network’s wireless coverage.

“A lot of people have been looking at embedded systems networking, but so far there has been a reluctance to take the plunge commercially,” says Hanna. “RUNES’ open-source model is an excellent way to stimulate progress, and it should generate plenty of consultancy work for the academic partners.”


Story Source:

The above story is based on materials provided by ICT Results. Note: Materials may be edited for content and length.


Cite This Page:

ICT Results. "Wireless Networks That Build Themselves." ScienceDaily. ScienceDaily, 14 March 2008. <www.sciencedaily.com/releases/2008/03/080311200326.htm>.
ICT Results. (2008, March 14). Wireless Networks That Build Themselves. ScienceDaily. Retrieved April 21, 2014 from www.sciencedaily.com/releases/2008/03/080311200326.htm
ICT Results. "Wireless Networks That Build Themselves." ScienceDaily. www.sciencedaily.com/releases/2008/03/080311200326.htm (accessed April 21, 2014).

Share This



More Matter & Energy News

Monday, April 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Newsy (Apr. 19, 2014) Nike fired most of its Digital Sport hardware team, the group behind Nike's FuelBand device. Could Apple or an overcrowded market be behind layoffs? Video provided by Newsy
Powered by NewsLook.com
Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins