Featured Research

from universities, journals, and other organizations

Findings Could Improve Fuel Cell Efficiency

Date:
March 24, 2008
Source:
Duke University
Summary:
A new type of membrane based on tiny iron particles appears to address one of the major limitations exhibited by current power-generating fuel cell technology. While there are many types of fuel cells, in general they generate electricity as the result of chemical reactions between an external fuel -- most commonly hydrogen -- and an agent that reacts with it. The membrane that separates the two parts of the cell and facilitates the reaction is a key factor in determining the efficiency of the cell.

A new type of membrane based on tiny iron particles appears to address one of the major limitations exhibited by current power-generating fuel cell technology. While there are many types of fuel cells, in general they generate electricity as the result of chemical reactions between an external fuel -- most commonly hydrogen -- and an agent that reacts with it. The membrane that separates the two parts of the cell and facilitates the reaction is a key factor in determining the efficiency of the cell.

Fuel cells are commonly used in such settings as satellites, submarines or remote weather stations because they have no moving parts, do not require combustion and can run unattended for long periods of time. However, current fuel cells lose efficiency as the temperature rises and the humidity falls.

Researchers at Duke University's Pratt School of Engineering have developed a membrane that allows fuel cells to operate at low humidity and theoretically to operate at higher temperatures.

"The current gold standard membrane is a polymer that needs to be in a humid environment in order to function efficiently," said Mark Wiesner, Ph.D., a Duke civil engineer and senior author of the paper. "If the polymer membrane dries out, its efficiency drops. We developed a ceramic membrane made of iron nanoparticles that works at much lower humidities. And because it is a ceramic, it should also tolerate higher temperatures.

"If the next series of tests proves that fuel cells with these new membranes perform well at high temperatures, we believe it might attract the type of investment needed to bring this technology to the market," Wiesner added.

The membrane most commonly used today, known as Nafion, was discovered in the 1960s. As the temperature rises, the polymer becomes unstable and the membranes dehydrate, leading to a loss of performance.

In addition to its temperature and heat limitations, Nafion is also much more expensive to produce than the new membrane, Wiesner said, adding that membranes make up as much as 40 percent of the overall cost of fuel cells.

Wiesner said he believes that future experiments will demonstrate the new membrane's ability to operate at higher temperatures.

"The efficiency of current membranes drops significantly at temperatures over 190 degrees Fahrenheit," he explained. "However, the chemical reactions that create the electricity are more efficient at high temperatures, so it would be a big improvement for fuel cell technology to make this advance."

An interesting outcome of these experiments is leading Wiesner down a new and related research path. As a result of the chemical reactions that create the electricity, small amounts of water are created as a byproduct.

"In the current technology, this water is used by the system to maintain the humidity within the cell," Wiesner said. "The water produced in these reactions is of high purity. So, if a fuel cell membrane could be developed that wasn't reliant on humidity, this water could be used for other purposes."

In addition to these experiments, Wiesner's team plans to study new ways of fabricating the membranes to improve their durability and flexibility.

Journal reference: Eliza M. Tsui and Mark R. Wiesner. Fast proton conducting ceramic membranes derived from ferroxane nanoparticle-precursors as fuel cell electrolytes. Journal of Membrane Science,In Press, Accepted Manuscript,Available online 21 February 2008.

The research was funded by the National Science Foundation and U.S. Office of Naval Research.


Story Source:

The above story is based on materials provided by Duke University. Note: Materials may be edited for content and length.


Cite This Page:

Duke University. "Findings Could Improve Fuel Cell Efficiency." ScienceDaily. ScienceDaily, 24 March 2008. <www.sciencedaily.com/releases/2008/03/080319133704.htm>.
Duke University. (2008, March 24). Findings Could Improve Fuel Cell Efficiency. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2008/03/080319133704.htm
Duke University. "Findings Could Improve Fuel Cell Efficiency." ScienceDaily. www.sciencedaily.com/releases/2008/03/080319133704.htm (accessed October 1, 2014).

Share This



More Matter & Energy News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Argentina's Tax Evaders Detected, Hunted Down by Drones

Argentina's Tax Evaders Detected, Hunted Down by Drones

AFP (Sep. 30, 2014) Argentina doesn't only have Lionel Messi the footballer, it has now also acquired "Mesi" the drone system which monitors undeclared mansions, swimming pools and soy fields to curb tax evasion in the country. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Do Video Games Trump Brain Training For Cognitive Boosts?

Do Video Games Trump Brain Training For Cognitive Boosts?

Newsy (Sep. 29, 2014) More and more studies are showing positive benefits to playing video games, but the jury is still out on brain training programs. Video provided by Newsy
Powered by NewsLook.com
CERN Celebrates 60 Years of Science

CERN Celebrates 60 Years of Science

Reuters - Business Video Online (Sep. 29, 2014) CERN, the European Organisation for Nuclear Research, celebrates 60 years of bringing nations together through science. As Joanna Partridge reports from inside the famous science centre it's also planning to turn the Large Hadron Collider particle accelerator back on after an upgrade. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins