Featured Research

from universities, journals, and other organizations

NASA Spacecraft Fine Tunes Course For Mars Landing

Date:
April 17, 2008
Source:
National Aeronautics And Space Administration
Summary:
NASA engineers have adjusted the flight path of the Phoenix Mars Lander, setting the spacecraft on course for its May 25 landing on the Red Planet. The mission's two prior trajectory maneuvers, made last August and October, adjusted the flight path of Phoenix to intersect with Mars.

This artist's concept shows NASA's Phoenix spacecraft en route to Mars.
Credit: NASA/JPL-Calech/University of Arizona

NASA engineers have adjusted the flight path of the Phoenix Mars Lander, setting the spacecraft on course for its May 25 landing on the Red Planet.

Related Articles


"This is our first trajectory maneuver targeting a specific location in the northern polar region of Mars," said Brian Portock, chief of the Phoenix navigation team at NASA's Jet Propulsion Laboratory in Pasadena, Calif. The mission's two prior trajectory maneuvers, made last August and October, adjusted the flight path of Phoenix to intersect with Mars.

NASA has conditionally approved a landing site in a broad, flat valley informally called "Green Valley." A final decision will be made after NASA's Mars Reconnaissance Orbiter takes additional images of the area this month.

The orbiter's High Resolution Imaging Science Experiment camera has taken more than three dozen images of the area. Analysis of those images prompted the Phoenix team to shift the center of the landing target 13 kilometers (8 miles) southeastward, away from slightly rockier patches to the northwest. Navigators used that new center for planning today's maneuver.

The landing area is an ellipse about 62 miles by about 12 miles (100 kilometers by 20 kilometers). Researchers have mapped more than five million rocks in and around that ellipse, each big enough to end the mission if hit by the spacecraft during landing. Knowing where to avoid the rockier areas, the team has selected a scientifically exciting target that also offers the best chances for the spacecraft to set itself down safely onto the Martian surface.

"Our landing area has the largest concentration of ice on Mars outside of the polar caps. If you want to search for a habitable zone in the arctic permafrost, then this is the place to go," said Peter Smith, principal investigator for the mission, at the University of Arizona, Tucson.

Phoenix will dig to an ice-rich layer expected to lie within arm's reach of the surface. It will analyze the water and soil for evidence about climate cycles and investigate whether the environment there has been favorable for microbial life.

"We have never before had so much information about a Mars site prior to landing," said Ray Arvidson of Washington University in St. Louis. Arvidson is chairman of the Phoenix landing-site working group and has worked on Mars landings since the first successful Viking landers in 1976.

"The environmental risks at landing -- rocks and slopes -- represent the most significant threat to a successful mission. There's always a chance that we'll roll snake eyes, but we have identified an area that is very flat and relatively free of large boulders," said JPL's David Spencer, Phoenix deputy project manager and co-chair of the landing site working group.

Today's trajectory adjustment began by pivoting Phoenix 145 degrees to orient and then fire spacecraft thrusters for about 35 seconds, then pivoting Phoenix back to point its main antenna toward Earth. The mission has three more planned opportunities for maneuvers before May 25 to further refine the trajectory for a safe landing at the desired location.

In the final seven minutes of its flight on May 25, Phoenix must perform a challenging series of actions to safely decelerate from nearly 21,000 kilometers per hour (13,000 mph). The spacecraft will release a parachute and then use pulse thrusters at approximately 914 meters (3,000 feet) from the surface to slow to about 8 kilometers per hour (5 mph) and land on three legs.

"Landing on Mars is extremely challenging. In fact, not since the 1970s have we had a successful powered landing on this unforgiving planet. There's no guarantee of success, but we are doing everything we can to mitigate the risks," said Doug McCuistion, director of NASA's Mars Exploration Program at NASA Headquarters in Washington.


Story Source:

The above story is based on materials provided by National Aeronautics And Space Administration. Note: Materials may be edited for content and length.


Cite This Page:

National Aeronautics And Space Administration. "NASA Spacecraft Fine Tunes Course For Mars Landing." ScienceDaily. ScienceDaily, 17 April 2008. <www.sciencedaily.com/releases/2008/04/080415134614.htm>.
National Aeronautics And Space Administration. (2008, April 17). NASA Spacecraft Fine Tunes Course For Mars Landing. ScienceDaily. Retrieved March 5, 2015 from www.sciencedaily.com/releases/2008/04/080415134614.htm
National Aeronautics And Space Administration. "NASA Spacecraft Fine Tunes Course For Mars Landing." ScienceDaily. www.sciencedaily.com/releases/2008/04/080415134614.htm (accessed March 5, 2015).

Share This


More From ScienceDaily



More Space & Time News

Thursday, March 5, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: SpaceX Launches Rocket, Satellites on Board

Raw: SpaceX Launches Rocket, Satellites on Board

AP (Mar. 2, 2015) — SpaceX launched it&apos;s 16th Falcon 9 rocket from Cape Canaveral, Florida on Sunday night. The rocket was carrying two commercial communications satellites. (March 2) Video provided by AP
Powered by NewsLook.com
NASA EDGE: SMAP Launch

NASA EDGE: SMAP Launch

NASA (Mar. 2, 2015) — Join NASA EDGE as they cover the launch of the Soil Moisture Active Passive (SMAP) spacecraft live from Vandenberg Air Force Base.  Special guests include NASA Administrator Charlie Bolden, SMAP Project System Engineer Shawn Goodman and Lt Col Brande Walton and Joseph Sims from the Air Force.  No word on the Co-Host&apos;s whereabouts. Video provided by NASA
Powered by NewsLook.com
Astronauts Leave Space Station for Third Spacewalk

Astronauts Leave Space Station for Third Spacewalk

Reuters - News Video Online (Mar. 1, 2015) — NASA Commander Barry Wilmore and Flight Engineer Terry Virts perform their third spacewalk in eight days outside the International Space Station. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Spacesuit Water Leaks Not An Issue On Latest ISS Walk

Spacesuit Water Leaks Not An Issue On Latest ISS Walk

Newsy (Mar. 1, 2015) — Astronauts are ahead of schedule with hardware upgrades to the International Space Station, despite last week&apos;s spacesuit water leak scare. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins