Featured Research

from universities, journals, and other organizations

MicroCT Of Skeleton Can ID Even The Subtlest Birth Defects

Date:
May 2, 2008
Source:
University of Texas Health Science Center at San Antonio
Summary:
A technique called microscopic X-ray computed tomography (microCT) is affording scientists the ability to visualize even the subtlest birth defects in prenatal and postnatal bats, mice, opossums and primates, which one day may lead to new understandings about human birth defects.

Skeletal views of a mouse fetus.
Credit: Image courtesy of University of Texas Health Science Center at San Antonio

A technique called microscopic X-ray computed tomography (microCT) is affording scientists the ability to visualize even the subtlest birth defects in prenatal and postnatal bats, mice, opossums and primates, which one day may lead to new understandings about human birth defects, said Charles Keller, M.D., of The University of Texas Health Science Center at San Antonio.

Related Articles


The research is published in The Anatomical Record.

“This is a paper about how scientists scrutinize birth defects,” said Dr. Keller, assistant professor of cellular and structural biology at the UT Health Science Center’s Greehey Children’s Cancer Research Institute. “We measured differences in skull and limb shape and length between very different types of animals that are commonly studied by geneticists. These techniques, which we developed, serve as a set of standards for geneticists who wish to assess other important bones, such as the bone that is commonly malformed in cleft palate or other face and skull deformities.”

The genetics revolution is enabling developmental biologists and geneticists to more rapidly conduct a host of gene function experiments, such as changing the expression or activity of a gene to make a limb longer or shorter. By doing this, scientists hope to more precisely determine a gene’s function in both normal and abnormal physiology. “These studies will help us understand birth defects, how to prevent them and how to treat them,” Dr. Keller said.

The paper includes skeletal images of a mouse, a zebrafish, a chicken, a duck, the little brown bat, the African clawed frog, an opossum and the mouse lemur. The research team obtained some of the skeletal specimens from the University of Utah, the Southwest Foundation for Biomedical Research in San Antonio and the Lemur Center at Duke University.

Advanced image analysis techniques were made possible by collaboration with the Scientific Computing and Imaging Institute at the University of Utah.

“The microCT is excellent for high-resolution, morphological (structural) study of developing bones without the introduction of artifacts of decalcification and tissue processing,” said Frank J. Weaker, Ph.D., associate professor of cellular and structural biology at the UT Health Science Center San Antonio.

Dr. Weaker is an anatomy lecturer and course director whose own educational approach has been to teach dental and medical students using computed tomography-based three-dimensional images.

The paper includes the contributions of more than a dozen investigators from the UT Health Science Center San Antonio Greehey Children’s Cancer Research Institute, the Southwest Foundation for Biomedical Research, the University of Utah and George Washington University.

A laureate for the 2007 Nobel Prize in Physiology or Medicine, Mario R. Capecchi, Ph.D., of the Department of Human Genetics at the University of Utah, is a co-author. Dr. Keller joined the UT Health Science Center from Dr. Capecchi’s laboratory in January 2005.

The work was made possible in part by software from the National Institutes of Health National Center for Research Resources (NCRR) Center for Integrative Biomedical Computing.


Story Source:

The above story is based on materials provided by University of Texas Health Science Center at San Antonio. Note: Materials may be edited for content and length.


Cite This Page:

University of Texas Health Science Center at San Antonio. "MicroCT Of Skeleton Can ID Even The Subtlest Birth Defects." ScienceDaily. ScienceDaily, 2 May 2008. <www.sciencedaily.com/releases/2008/04/080430141049.htm>.
University of Texas Health Science Center at San Antonio. (2008, May 2). MicroCT Of Skeleton Can ID Even The Subtlest Birth Defects. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2008/04/080430141049.htm
University of Texas Health Science Center at San Antonio. "MicroCT Of Skeleton Can ID Even The Subtlest Birth Defects." ScienceDaily. www.sciencedaily.com/releases/2008/04/080430141049.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins